Guohong Fang | Coastal Hydrology | Surface Water Dynamics Award

Prof. Guohong Fang | Coastal Hydrology | Surface Water Dynamics Award

Retired Professor at First Institute of Oceanography, Ministry of Natural Resouces, China

Academician Guohong Fang, born in December 1939 in Ruian, Zhejiang, China, is a distinguished physical oceanographer known for his pioneering research in ocean tides, ocean circulation, and numerical modeling. A graduate of Nankai University’s Department of Physics, he has made significant contributions to the study of tidal currents, developing innovative methods for their analysis and prediction. His work has led to accurate models for tides in the seas adjacent to China and the creation of advanced regional tide prediction systems. He has proposed fundamental oceanographic concepts, including the Taiwan-Tsushima-Soya current system and the South China Sea Throughflow. With over 200 published research papers and multiple national awards, his contributions have been widely recognized, culminating in his election as a member of the Chinese Academy of Engineering in 2007. His groundbreaking discoveries continue to shape the field of oceanography.

Professional Profile 

Education

Guohong Fang pursued his higher education at Nankai University, one of China’s prestigious institutions, where he graduated from the Department of Physics. His academic background in physics provided him with a strong foundation for his later work in physical oceanography. His studies equipped him with expertise in mathematical modeling, fluid dynamics, and oceanic processes, which became the cornerstone of his research in ocean tides, circulation, and numerical modeling. His education played a crucial role in shaping his career as a leading oceanographer, enabling him to develop innovative methods for tide analysis and prediction, as well as groundbreaking contributions to the understanding of ocean currents.

Professional Experience

Guohong Fang has built an illustrious career as a physical oceanographer at the First Institute of Oceanography, Ministry of Natural Resources, where he has dedicated his expertise to advancing the understanding of ocean tides, circulation, and numerical modeling. Throughout his career, he has developed innovative methods for analyzing and predicting tidal currents, establishing accurate models for the seas adjacent to China and creating successive generations of regional tide prediction systems. His pioneering work includes offering a general solution to the Taylor problem, elucidating the vertical variation of tidal currents, and uncovering the frictional nonlinearity inherent in tidal phenomena. Fang’s groundbreaking studies have led to the first quantitative estimates of water transports in critical regions like the Taiwan Strait and the East China Sea, along with the proposal of influential oceanographic concepts such as the Taiwan-Tsushima-Soya current system and the South China Sea Throughflow. His extensive contributions, recognized through over 200 publications and multiple national awards, underscore his role as a leader in his field and have cemented his reputation within the scientific community.

Research Interest

Guohong Fang’s research interests lie at the intersection of physical oceanography and numerical modeling, with a particular focus on the dynamics of ocean tides and tidal currents. He is dedicated to developing innovative analytical methods and sophisticated computational models that enhance the prediction and understanding of tidal behaviors in complex marine environments. His work encompasses investigating the fundamental principles governing ocean circulation, exploring the intricate interactions between tidal forces and frictional nonlinearity, and quantifying water transport mechanisms in key regions such as the Taiwan Strait and the East China Sea. Through these efforts, Fang aims to advance our understanding of the ocean’s role in the broader climate system and improve the accuracy of marine forecasting systems.

Award and Honor

Guohong Fang has been the recipient of numerous prestigious awards and honors throughout his career, reflecting his significant contributions to the field of physical oceanography. His groundbreaking work has earned him multiple National Natural Science Awards and National Science and Technology Progress Awards, acknowledging his advancements in the analysis and prediction of ocean tides and tidal currents. In recognition of his influential research and innovative methodologies, he was elected as a member of the Chinese Academy of Engineering in 2007. These accolades not only highlight his scientific achievements but also underscore his enduring impact on oceanographic research and the broader scientific community.

Conclusion

Academician Guohong Fang has made significant contributions to physical oceanography, with groundbreaking research, innovative methodologies, and prestigious national recognition. Given his impact on ocean tide modeling, current predictions, and fundamental discoveries, he is a strong candidate for the Best Researcher Award.

Publications Top Noted

  1. Title: Field measurements of turbulent mixing south of the Lombok Strait, Indonesia
    Authors: R.D. Susanto, R. Dwi; Z. Wei, Zexun; P.D. Santoso, Priyadi Dwi; Y. Li, Ying; G. Fang, Guohong
    Year: 2024
    Citations: 1

  2. Title: A comparison of global and regional ocean tide models with tide gauges in the East Asian marginal seas
    Authors: X. Xu, Xiaoqing; H. Pan, Haidong; F. Teng, Fei; G. Fang, Guohong; Z. Wei, Zexun
    Year: 2024
    Citations: 3

  3. Title: Shallow water tides induced by frictional nonlinearity in the Bohai and Yellow Seas
    Authors: F. Teng, Fei; G. Fang, Guohong; X. Xu, Xiaoqing; Y. Zhu, Yaohua
    Year: 2023
    Citations: 3

  4. Title: A comparative study of sea surface wind datasets and their induced circulation characteristics in the North Pacific Ocean
    Authors: D. Wang, Dingqi; G. Fang, Guohong; T. Xu, Tengfei; Z. Wei, Zexun; Y. Wang, Yonggang (and others)
    Year: 2023
    Citations: 1

  5. Title: Satellite-detected phytoplankton blooms in the Japan/East Sea during the past two decades: Magnitude and timing
    Authors: D. Wang, Dingqi; G. Fang, Guohong; S. Jiang, Shumin; Y. Wang, Yonggang; T. Xu, Tengfei (and others)
    Year: 2022
    Citations: 2

  6. Title: Characteristics of Marine Heatwaves in the Japan/East Sea
    Authors: D. Wang, Dingqi; T. Xu, Tengfei; G. Fang, Guohong; Z. Wei, Zexun; Y. Wang, Yonggang (and others)
    Year: 2022
    Citations: 25

  7. Title: Accuracy assessment of global vertical displacement loading tide models in the Bohai Sea, Yellow Sea, East China Sea and surrounding areas
    Authors: X. Xu, Xiaoqing; Z. Wei, Zexun; F. Teng, Fei; X. Gao, Xiumin; G. Fang, Guohong
    Year: 2022
    Citations:0

Fang Wang | Ecohydrology | Best Researcher Award

Prof. Fang Wang | Ecohydrology | Best Researcher Award

Professor (Grade II) at China Institute of Water Resources and Hydropower Research, China

Fang Wang is a distinguished researcher in watershed ecological hydrology with a prolific career spanning decades. She has led or participated in over 100 research projects and authored approximately 80 papers, including a widely cited work on ecological water demand in Northwest China. Her contributions include two groundbreaking innovations: the theory of ecological water demand supported by non-zonal vegetation and the identification of the water-salt threshold necessary for maintaining lake ecosystem stability. She has been honored with two National Science and Technology Progress Awards and five Great Yu Science and Technology Progress Awards. Currently serving as Deputy Chief Engineer at the Water Resources Institute, she has also held leadership roles, including Director of the Water Ecological Environment Department. In addition to her academic achievements, she has received multiple awards recognizing her contributions to water conservation and women’s advancement in science. Her work has had a significant impact on water resource management, influencing policies such as the evaluation of the Datong River Water Diversion Project for Qinghai Lake.

Professional Profile 

Education

Fang Wang holds a strong academic background in water resources and environmental studies. She earned her Bachelor’s degree from Inner Mongolia Forestry College in 1986, followed by a Master’s degree from Hohai University in 1994. Continuing her pursuit of knowledge, she obtained a Doctorate from the China Institute of Water Resources and Hydropower Research in 2000. Her educational journey provided a solid foundation for her expertise in watershed ecological hydrology, which she has applied throughout her research career.

Professional Experience

Fang Wang has had an extensive and impactful career in water resources research and management. She began her professional journey with roles at the Inner Mongolia Workers’ University of Water Resources and the Inner Mongolia Electric Power Survey and Design Institute, gaining valuable experience before completing her doctorate. After earning her Ph.D. in 2000, she joined the Water Resources Institute at the China Institute of Water Resources and Hydropower Research, where she has been actively engaged in research. She was promoted to Professor-Level Senior Engineer in 2008 and later served as Director of the Water Ecological Environment Department from 2014 to 2017. Since 2017, she has held the position of Deputy Chief Engineer at the Water Resources Institute. In addition to her leadership roles, she is a respected member of the National Committee for Wetland Science and Technology and the National Committee for Wetland Standardization, further solidifying her influence in the field of ecological hydrology and water resource management.

Research Interest

Fang Wang’s research interests lie in watershed ecological hydrology, with a strong focus on ecological water demand, wetland conservation, and water resource management. Her work explores the intricate relationship between water availability and ecosystem sustainability, particularly in arid and semi-arid regions. She has made significant contributions to understanding non-zonal vegetation-supported ecological water demand and the water-salt balance necessary for maintaining lake ecosystem stability. Her research has played a crucial role in shaping policies related to water conservation, such as the evaluation of the Datong River Water Diversion Project for Qinghai Lake. Through her extensive studies, she aims to develop sustainable water resource management strategies that balance environmental protection with human water needs.

Award and Honor

Fang Wang has received numerous prestigious awards and honors in recognition of her outstanding contributions to water resource research and ecological hydrology. She has been honored with two National Science and Technology Progress Awards and five Great Yu Science and Technology Progress Awards for her groundbreaking research. Her influential paper, Research on Ecological Water Demand in Northwest China, earned the First Prize for Outstanding Papers from the China Association for Science and Technology and the Outstanding Achievement Award commemorating the 60th Anniversary of the China Institute of Water Resources and Hydropower Research. In addition to her scientific achievements, she has been recognized for her contributions to women’s advancement in water conservation, receiving titles such as “Advanced Individual for Women’s Work in Water Conservancy” (2011, 2017), “March 8th Red Flag Bearer”, “National Women’s Work Pioneer” (2018), and the “Women’s Work Award” celebrating the 60th Anniversary of the China Institute of Water Resources and Hydropower Research. These accolades highlight her significant impact on both scientific research and leadership in water resource management.

Conclusion

Fang Wang is a highly accomplished researcher with outstanding contributions to watershed ecological hydrology. Her extensive publications, pioneering theories, and leadership in water resource research make her a strong candidate for the Best Researcher Award. Strengthening global collaborations and technological applications could further solidify her standing.

Publications Top Noted

  1. Compositional shifts and co-occurrence patterns of topsoil bacteria and micro-eukaryotes across a permafrost thaw gradient in alpine meadows of the Qilian Mountains, China

    • Authors: Z. Wang, Zhu; F. Wang, Fang

    • Year: 2025

    • Citations: 0

  2. Spatial Patterns of Soil Bacterial Communities and N-cycling Functional Groups Along an Altitude Gradient in Datong River Basin

    • Authors: Z. Wang, Zhu; Y. Liu, Yang; F. Wang, Fang

    • Year: 2024

    • Citations: 1

  3. Evaluation and comparison of 11 sets of gridded precipitation products over the Qinghai-Tibet Plateau

    • Authors: P. Rao, Pinzeng; F. Wang, Fang; X. Yuan, Xing; Y. Liu, Yang; Y. Jiao, Yang

    • Year: 2024

    • Citations: 7

  4. Spatiotemporal characteristics and natural forces of grassland NDVI changes in Qilian Mountains from a sub-basin perspective

    • Authors: Z. Wang, Zhu; Y.C. Wang, Yioheng Cheng; Y. Liu, Yang; W. Deng, Wei; P. Rao, Pinzeng

    • Year: 2023

    • Citations: 8