Xuanhe Han | Hydraulic Engineering | Best Researcher Award

Dr. Xuanhe Han | Hydraulic Engineering | Best Researcher Award

PhD Candidate at Hainan University, China

Xuanhe Han is a PhD candidate in Deep-Sea Mining at the College of Marine Science and Engineering, Hainan University, where he also completed an accelerated M.Sc.-to-PhD program in Control Engineering. His research focuses on multiphase flow visualization and sustainable mining systems, with contributions including the development of dual-modality electrical tomography and innovative models for gas-liquid two-phase flow. He has published 7 SCI-indexed papers—one as first author in Ocean Engineering (IF 5.0)—and contributed to four major research projects, including China’s State Key R&D Program. Recognized with a First-Class Academic Scholarship, Han’s work bridges advanced fluid mechanics with real-world applications in environmentally responsible deep-sea resource development.

Professional Profile 

🎓 Education of Xuanhe Han

Xuanhe Han is currently pursuing his Ph.D. in Deep-Sea Mining at the College of Marine Science and Engineering, Hainan University (2024–present), under the supervision of Professor Yijun Shen. Prior to this, he completed his M.Sc. in Control Engineering (2022–2024) through Hainan University’s prestigious accelerated master-to-doctoral program, designed for high-performing students. His academic foundation combines interdisciplinary expertise in engineering systems and ocean technology, equipping him with the technical and analytical skills required for cutting-edge research in sustainable deep-sea resource development.

💼 Professional Experience of Xuanhe Han

Xuanhe Han has accumulated significant research experience through active participation in national and provincial-level projects related to deep-sea mining and multiphase flow systems. As a core researcher in China’s State Key R&D Program on intelligent equipment for deep-sea mineral resource development (2021–2025), he has contributed to the advancement of sustainable marine technologies. He also served as a research member in a National Natural Science Foundation project focused on gas-liquid flow mechanisms in mining systems (2023–2027), and as the technical lead for Hainan’s provincial project assessing the environmental impacts of deep-sea mining (2021–2023). Additionally, Han was the principal investigator of a university-level innovation project on novel tomography techniques (2020–2022), showcasing his leadership and technical expertise at an early career stage.

🔬 Research Interest of Xuanhe Han

Xuanhe Han’s research interests lie at the intersection of deep-sea engineering, fluid dynamics, and sustainable resource extraction. He focuses on multiphase flow behavior in deep-sea mining systems, particularly in the development and optimization of airlift pump technologies. His work involves advanced flow visualization techniques, such as dual-modality electrical tomography, to monitor and analyze gas-liquid interactions in real time. Additionally, he is interested in integrating ocean thermal energy conversion and waste heat recovery systems to improve the energy efficiency of offshore operations. With a strong commitment to environmental sustainability, Han also explores the ecological impact of deep-sea mining activities, aiming to balance technological advancement with ocean conservation.

🏅 Awards and Honors of Xuanhe Han

Xuanhe Han has been recognized for his academic excellence and research potential through several prestigious honors. He is a recipient of the First-Class Academic Scholarship at Hainan University for the period 2022–2025, awarded to top-performing graduate students demonstrating outstanding academic achievement and research contributions. This scholarship reflects his rapid progress through an accelerated master-to-doctoral program and his active involvement in high-impact national research projects. His consistent publication in SCI-indexed journals and leadership roles in innovative engineering research further highlight his recognition as a rising talent in the field of marine science and engineering.

✅Conclusion:

Xuanhe Han is a highly promising early-career researcher whose contributions to deep-sea mining technologies and multiphase flow modeling are both technically advanced and strategically significant. His rapid academic progression, involvement in key national projects, and first-author publications in high-impact journals showcase a rare combination of initiative, innovation, and productivity at the doctoral level.

📚 Selected Publications of Xuanhe Han

  1. Title: Pressure characteristics in an airlift pump system
    Authors: Jianhang Ren, Fusen Peng, Meng Li, Jingyu Zhu, Xuanhe Han, Mengdi Fu, Rongqian Ruan, Jianyu Xiao, Yanlian Du, Yijun Shen
    Journal: Physics of Fluids
    Year: 2025
    DOI: 10.1063/5.0250828

  2. Title: Gas void fraction and flow pattern transition mechanism in an airlift pump system
    Authors: Jianhang Ren, Meng Li, Fusen Peng, Jingyu Zhu, Yanlian Du, Xuanhe Han, Mengdi Fu, Rongqian Ruan, Jianyu Xiao, Yijun Shen
    Journal: Physics of Fluids
    Year: 2025
    DOI: 10.1063/5.0249929

  3. Title: Evaluate the performance of the vertically upward gas–liquid two-phase flow in an airlift pump system
    Authors: Zhu J., Du Y., Li M., Fu M., Han X., Peng F., Ruan R., Shen Y.
    Journal: International Journal of Multiphase Flow
    Year: 2024
    DOI: 10.1016/j.ijmultiphaseflow.2024.105016

  4. Title: Performance analysis of ocean thermal energy conversion system integrated with waste heat recovery from offshore oil and gas platform
    Authors: Du Y., Peng H., Xu J., Tian Z., Zhang Y., Han X., Shen Y.
    Journal: Case Studies in Thermal Engineering
    Year: 2024
    DOI: 10.1016/j.csite.2024.104027

  5. Title: Visualization Study of Multiphase Flow in Deep-Sea Mining based on Dual-Modality Electrical Tomography
    Authors: Han X., Du Y., Fu M., Zhu J., Shen Y.
    Repository: SSRN
    Year: 2024
    DOI: 10.2139/ssrn.4774129

  6. Title: Frictional pressure drop of the vertically upward gas–liquid two-phase flow in an airlift pump system
    Authors: Jingyu Zhu, Yanlian Du, Mengdi Fu, Xuanhe Han, Meng Li, Rongqian Ruan, Yijun Shen
    Journal: Physics of Fluids
    Year: 2024
    DOI: 10.1063/5.0229776

  7. Title: Gas state equation and flow mechanism of gas–liquid two-phase flow in airlift pump system
    Authors: Yanlian Du, Jingyu Zhu, Xuanhe Han, Mengdi Fu, Meng Li, Yijun Shen
    Journal: Physics of Fluids
    Year: 2024
    DOI: 10.1063/5.0201317

Fang Wang | Ecohydrology | Best Researcher Award

Prof. Fang Wang | Ecohydrology | Best Researcher Award

Professor (Grade II) at China Institute of Water Resources and Hydropower Research, China

Fang Wang is a distinguished researcher in watershed ecological hydrology with a prolific career spanning decades. She has led or participated in over 100 research projects and authored approximately 80 papers, including a widely cited work on ecological water demand in Northwest China. Her contributions include two groundbreaking innovations: the theory of ecological water demand supported by non-zonal vegetation and the identification of the water-salt threshold necessary for maintaining lake ecosystem stability. She has been honored with two National Science and Technology Progress Awards and five Great Yu Science and Technology Progress Awards. Currently serving as Deputy Chief Engineer at the Water Resources Institute, she has also held leadership roles, including Director of the Water Ecological Environment Department. In addition to her academic achievements, she has received multiple awards recognizing her contributions to water conservation and women’s advancement in science. Her work has had a significant impact on water resource management, influencing policies such as the evaluation of the Datong River Water Diversion Project for Qinghai Lake.

Professional Profile 

Education

Fang Wang holds a strong academic background in water resources and environmental studies. She earned her Bachelor’s degree from Inner Mongolia Forestry College in 1986, followed by a Master’s degree from Hohai University in 1994. Continuing her pursuit of knowledge, she obtained a Doctorate from the China Institute of Water Resources and Hydropower Research in 2000. Her educational journey provided a solid foundation for her expertise in watershed ecological hydrology, which she has applied throughout her research career.

Professional Experience

Fang Wang has had an extensive and impactful career in water resources research and management. She began her professional journey with roles at the Inner Mongolia Workers’ University of Water Resources and the Inner Mongolia Electric Power Survey and Design Institute, gaining valuable experience before completing her doctorate. After earning her Ph.D. in 2000, she joined the Water Resources Institute at the China Institute of Water Resources and Hydropower Research, where she has been actively engaged in research. She was promoted to Professor-Level Senior Engineer in 2008 and later served as Director of the Water Ecological Environment Department from 2014 to 2017. Since 2017, she has held the position of Deputy Chief Engineer at the Water Resources Institute. In addition to her leadership roles, she is a respected member of the National Committee for Wetland Science and Technology and the National Committee for Wetland Standardization, further solidifying her influence in the field of ecological hydrology and water resource management.

Research Interest

Fang Wang’s research interests lie in watershed ecological hydrology, with a strong focus on ecological water demand, wetland conservation, and water resource management. Her work explores the intricate relationship between water availability and ecosystem sustainability, particularly in arid and semi-arid regions. She has made significant contributions to understanding non-zonal vegetation-supported ecological water demand and the water-salt balance necessary for maintaining lake ecosystem stability. Her research has played a crucial role in shaping policies related to water conservation, such as the evaluation of the Datong River Water Diversion Project for Qinghai Lake. Through her extensive studies, she aims to develop sustainable water resource management strategies that balance environmental protection with human water needs.

Award and Honor

Fang Wang has received numerous prestigious awards and honors in recognition of her outstanding contributions to water resource research and ecological hydrology. She has been honored with two National Science and Technology Progress Awards and five Great Yu Science and Technology Progress Awards for her groundbreaking research. Her influential paper, Research on Ecological Water Demand in Northwest China, earned the First Prize for Outstanding Papers from the China Association for Science and Technology and the Outstanding Achievement Award commemorating the 60th Anniversary of the China Institute of Water Resources and Hydropower Research. In addition to her scientific achievements, she has been recognized for her contributions to women’s advancement in water conservation, receiving titles such as “Advanced Individual for Women’s Work in Water Conservancy” (2011, 2017), “March 8th Red Flag Bearer”, “National Women’s Work Pioneer” (2018), and the “Women’s Work Award” celebrating the 60th Anniversary of the China Institute of Water Resources and Hydropower Research. These accolades highlight her significant impact on both scientific research and leadership in water resource management.

Conclusion

Fang Wang is a highly accomplished researcher with outstanding contributions to watershed ecological hydrology. Her extensive publications, pioneering theories, and leadership in water resource research make her a strong candidate for the Best Researcher Award. Strengthening global collaborations and technological applications could further solidify her standing.

Publications Top Noted

  1. Compositional shifts and co-occurrence patterns of topsoil bacteria and micro-eukaryotes across a permafrost thaw gradient in alpine meadows of the Qilian Mountains, China

    • Authors: Z. Wang, Zhu; F. Wang, Fang

    • Year: 2025

    • Citations: 0

  2. Spatial Patterns of Soil Bacterial Communities and N-cycling Functional Groups Along an Altitude Gradient in Datong River Basin

    • Authors: Z. Wang, Zhu; Y. Liu, Yang; F. Wang, Fang

    • Year: 2024

    • Citations: 1

  3. Evaluation and comparison of 11 sets of gridded precipitation products over the Qinghai-Tibet Plateau

    • Authors: P. Rao, Pinzeng; F. Wang, Fang; X. Yuan, Xing; Y. Liu, Yang; Y. Jiao, Yang

    • Year: 2024

    • Citations: 7

  4. Spatiotemporal characteristics and natural forces of grassland NDVI changes in Qilian Mountains from a sub-basin perspective

    • Authors: Z. Wang, Zhu; Y.C. Wang, Yioheng Cheng; Y. Liu, Yang; W. Deng, Wei; P. Rao, Pinzeng

    • Year: 2023

    • Citations: 8

 

Fangfang Li | Water-Energy Nexus | Women Researcher Award

Prof. Fangfang Li | Water-Energy Nexus | Women Researcher Award

Professor at China Agricultural University, China

Professor Fangfang Li is a distinguished researcher in water resources management and hydro-PV-wind energy systems, currently serving as a professor at China Agricultural University. With a Ph.D. from Tsinghua University and visiting research experience at Cornell and Cambridge, she has led numerous high-impact projects funded by the National Natural Science Foundation of China. Her research focuses on optimizing renewable energy integration, ecological water scheduling, and uncertainty reduction in hydropower operations. She has published 68 SCI papers, holds 6 invention patents and 4 software copyrights, and has received prestigious honors such as the Young Changjiang Scholar Award. Her work extends beyond academia through consultancy projects that contribute to real-world hydrological and energy solutions. With an h-index of 17 and over 1,192 citations, Professor Li’s contributions significantly advance sustainable water and energy management.

Professional Profile 

Education

Professor Fangfang Li holds a bachelor’s and a Ph.D. from Tsinghua University, one of China’s most prestigious institutions. She further expanded her academic experience through visiting research at Cornell University and the University of Cambridge, where she deepened her expertise in water resources management and renewable energy systems. Her strong educational foundation has played a crucial role in shaping her research focus on hydrology, multi-energy systems, and ecological water scheduling, positioning her as a leading expert in the field.

Professional Experience

Professor Fangfang Li is a distinguished researcher and professor at China Agricultural University, specializing in water resources management and hydro-PV-wind energy systems. She has led numerous high-impact research projects, including those funded by the National Natural Science Foundation of China and other prestigious institutions. Her career includes postdoctoral research at China Three Gorges Corporation, where she contributed to optimizing hydropower operations. As a principal investigator, she has spearheaded projects on multi-energy complementary systems, ecological water scheduling, and climate-resilient hydropower management. In addition to her academic contributions, she has worked on industry consultancy projects, developing innovative solutions for flood scheduling, ecological conservation, and sustainable energy integration. With her extensive experience in research, innovation, and real-world applications, Professor Li continues to make significant advancements in the field of hydrology and renewable energy.

Research Interest

Professor Fangfang Li’s research interests lie at the intersection of water resources management, renewable energy integration, and ecological hydrology. She focuses on optimizing multi-energy complementary systems, particularly hydro-PV-wind energy, to enhance sustainability and efficiency in power generation. Her work also addresses uncertainty reduction in hydropower operations, aiming to improve forecasting and decision-making in water and energy systems. Additionally, she is deeply engaged in ecological water scheduling, developing models that balance energy production with environmental conservation. Her research extends to atmospheric water resources, cloud water utilization, and climate change impacts on hydrological processes, contributing to the advancement of sustainable water and energy management.

Award and Honor

Professor Fangfang Li has received numerous prestigious awards and honors in recognition of her outstanding contributions to water resources management and renewable energy research. She was honored with the Young Changjiang Scholar Award, a highly regarded distinction in China that recognizes exceptional academic achievements. Her innovative research in hydro-PV-wind energy systems and ecological water management has earned her leadership roles in multiple national research projects funded by the National Natural Science Foundation of China. In addition to her scholarly achievements, her work has been acknowledged by leading hydrology and energy institutions, further solidifying her reputation as a pioneering researcher in sustainable water and energy systems.

Conclusion

Professor Fangfang Li is an exceptional candidate for the Women Researcher Award. Her contributions to hydrology, renewable energy, and ecological water management are both academically rigorous and practically impactful. Her leadership in high-profile projects and technological innovations further solidify her eligibility. Enhancing global collaborations and advocating for women in STEM would further strengthen her case. Overall, she is highly suitable for this award.

Publications Top Noted

  • Atmospheric Water Resources and Their Exploitability in the Middle East

    • Authors: F. Li, Fangfang; H. Lu, Houliang; H. Wang, Hongru; P. Sun, Peng; J. Qiu, Jun

    • Year: 2025

    • Citations: 0

  • Multi-objective optimization of non-fossil energy structure in China towards the carbon peaking and carbon neutrality goals

    • Authors: M. Li, Mengjia; F. Li, Fangfang; J. Qiu, Jun; N. Zhang, Nan; Z. Song, Zhengyu

    • Year: 2024

    • Citations: 0

  • Long-Term Capturability of Atmospheric Water on a Global Scale (Open Access)

    • Authors: F. Li, Fangfang; H. Lu, Houliang; G. Wang, Guangqian; J. Qiu, Jun

    • Year: 2024

    • Citations: 0

  • Potential impact of precipitation temporal structure on meteorological drought and vegetation condition: A case study on Qinghai-Tibet Plateau (Open Access)

    • Authors: H. Lu, Houliang; J. Qiu, Jun; B.X. Hu, Bill Xiao; F. Li, Fangfang

    • Year: 2024

    • Citations: 1

  • Optimizing reservoir operation incorporating ecological demand and stability requirement

    • Authors: J. Qiu, Jun; C. Ma, Cang; H. Wang, Hongru; H. Li, Houjun; F. Li, Fangfang

    • Year: 2024

    • Citations: 0

  • An improved cross-correlation method for efficient clouds forecasting

    • Authors: H. Zuo, Huimin; J. Qiu, Jun; F. Li, Fangfang

    • Year: 2024

    • Citations: 0

  • A developed Criminisi algorithm based on particle swarm optimization (PSO-CA) for image inpainting

    • Authors: F. Li, Fangfang; H. Zuo, Huimin; Y. Jia, Yinghui; J. Qiu, Jun

    • Year: 2024

    • Citations: 4