Yunliang Li | Water Resources | Best Researcher Award

Prof. Yunliang Li | Water Resources | Best Researcher Award

Professor at Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, China

Yunliang Li is a distinguished researcher specializing in hydrological studies of floodplain lakes, with significant contributions to understanding surface-groundwater interactions, lake flood-pulse processes, and hydrological connectivity in highly heterogeneous floodplain settings. He has independently developed the Lake-Catchment Simulator v1.0, a large-scale numerical model that assesses the hydrodynamic and environmental responses of floodplain lakes to natural and human disturbances. With 71 peer-reviewed publications (including 41 SCI papers) and over 1352 citations, along with two academic monographs, his work has gained substantial recognition. He has received multiple prestigious awards, including the Second Prize for Scientific and Technological Progress from the China National Committee on Large Dams and the Changjiang Technology and Economy Society, as well as honors from the Chinese Academy of Sciences and the Ministry of Water Resources Science and Technology Talent. Holding 23 patents and software copyrights, his research not only advances scientific understanding but also contributes to practical environmental management. His future work aims to deepen insights into the impact of natural and anthropogenic disturbances on floodplain hydrodynamics, further cementing his influence in the field.

Professional Profile 

Education

Yunliang Li holds a strong academic background in hydrology and water resources, with advanced degrees that have laid the foundation for his expertise in floodplain lake dynamics and hydrological connectivity. He obtained his Ph.D. in Hydrology and Water Resources from a leading institution, where he conducted in-depth research on surface-groundwater interactions and floodplain hydrodynamics. Prior to that, he earned his Master’s and Bachelor’s degrees in related fields, equipping him with a solid understanding of eco-hydrology, numerical modeling, and environmental water management. His academic journey has been marked by interdisciplinary learning, innovative research, and technical skill development, enabling him to make substantial contributions to the field of hydrological science.

Professional Experience

Yunliang Li has an extensive professional background in hydrological research, focusing on floodplain lake dynamics, surface-groundwater interactions, and eco-hydrological modeling. He has been actively engaged in scientific research and technological innovation, contributing significantly to the development of hydrological connectivity theories and large-scale numerical simulation tools such as the Lake-Catchment Simulator v1.0. Throughout his career, he has led and participated in numerous high-impact research projects, systematically assessing the effects of extreme hydrological events and human activities on floodplain lakes like Poyang Lake. His expertise has been recognized through multiple prestigious awards and leadership roles in scientific committees, research institutions, and environmental assessment initiatives. In addition to his academic contributions, he has played a key role in patent development and software innovation, further bridging the gap between scientific research and practical water resource management. His ongoing work continues to advance the understanding of hydrodynamic processes, influencing both national and international water management strategies.

Research Interest

Yunliang Li’s research interests lie at the intersection of hydrology, eco-hydrodynamics, and environmental water management, with a particular focus on floodplain lake systems. He is dedicated to understanding surface-groundwater interactions, the hydrological connectivity of heterogeneous floodplains, and the impacts of natural and anthropogenic disturbances on lake hydrodynamics. His work involves developing advanced numerical modeling techniques, such as the Lake-Catchment Simulator v1.0, to assess hydrodynamic and environmental changes under extreme hydrological events and human interventions. Additionally, he is deeply interested in hydrological regulation, ecological restoration, and water resource sustainability, aiming to bridge theoretical research with practical applications for flood risk management, ecosystem conservation, and climate adaptation strategies. Through his research, he seeks to provide scientific insights and technical solutions for better managing floodplain lakes and water environments in response to global environmental changes.

Award nd Honor

Yunliang Li has received numerous prestigious awards and honors in recognition of his outstanding contributions to hydrological research and water resource management. He was awarded the Second Prize for Scientific and Technological Progress by both the China National Committee on Large Dams and the Changjiang Technology and Economy Society, highlighting his pioneering work in floodplain hydrodynamics and hydrological connectivity. He has also been honored as an Excellent Member of the Youth Innovation Promotion Association of the Chinese Academy of Sciences (CAS) and was selected for the Jiangxi Province Thousand Talents Program, demonstrating his influence in advancing eco-hydrological research. Additionally, he has been recognized by the Ministry of Water Resources Science and Technology Talent Program for his contributions to water science and technology innovation. With 23 patents and software copyrights, his research has not only expanded scientific knowledge but also provided practical solutions for water resource management and environmental sustainability. These accolades underscore his leadership and impact in the field of hydrology.

Conclusion

Yunliang Li is a highly deserving candidate for the Best Researcher Award. His groundbreaking contributions to hydrological connectivity, floodplain lake dynamics, and numerical modeling demonstrate excellence. His publication record, patents, and national recognition underscore his impact. Strengthening international collaborations and interdisciplinary applications could further enhance his standing. Given his contributions and achievements, he is a strong contender for this award.

Publications Top Noted

  1. Title: A distributed and process-based model coupling water-sediment-antibiotic interactions to simulate dynamic source-transport-fate of antibiotics at catchment scale

    • Authors: H. Xie, Hui; M. Shang, Meiqi; J. Dong, Jianwei; Y. Li, Yunliang; X.J. Lai, Xijun Jun

    • Year: 2025

    • Citations: 1

  2. Title: How do agricultural polders modulate nutrient dynamics under extreme flooding: Insights for water management in lowland areas

    • Authors: H. Xie, Hui; Y. Li, Yunliang; M. Shang, Meiqi; Y. Wang, Yang; X.J. Lai, Xijun Jun

    • Year: 2025

    • Citations: 0

  3. Title: Disentangling the spatially combined and temporally lagged influences of climate oscillations on seasonal droughts in the East Asian monsoon influenced Poyang Lake Basin

    • Authors: Z. Xing, Zikang; J. Wei, Jianhui; Y. Li, Yunliang; P. Laux, Patrick; H. Kunstmann, Harald

    • Year: 2024

    • Citations: 3

  4. Title: Hydrological Modeling to Unravel the Spatiotemporal Heterogeneity and Attribution of Baseflow in the Yangtze River Source Area, China

    • Authors: H. Ren, Huazhun; G. Wu, Guangdong; L. Shu, Longchang; Y. Li, Yunliang; Y. Wang, Yuxuan

    • Year: 2024

    • Citations: 0

  5. Title: Unravelling groundwater budget in the Poyang floodplain system under intensifying seasonal lake inundation

    • Authors: W. Jiang, Wenyu; B. Liu, Bo; Y. Li, Yunliang; C. Lu, Chengpeng; L. Shu, Longchang

    • Year: 2024

    • Citations: 2

  6. Title: The effects of damming and dam regulation on a river–lake-aquifer system: 3D groundwater flow modeling of Poyang Lake (China)

    • Authors: W. Jiang, Wenyu; B. Liu, Bo; Y. Li, Yunliang; C. Lu, Chengpeng; L. Shu, Longchang

    • Year: 2024

    • Citations: 3

  7. Title: Unveiling ionic structure in the LiF-NdF3 molten salt system as determined by Raman spectroscopy and quantum chemical calculations

    • Authors: M. Lin, Ming; J. Guan, Jinzhao; M. Aziz Diop, Mouhamadou; Y. Li, Yunliang; P. Chen, Peng

    • Year: 2024

    • Citations: 2

  8. Title: Revealing temporal variation of baseflow and its underlying causes in the source region of the Yangtze River (China)

    • Authors: G. Wu, Guangdong; J. Zhang, Jianyun; Y. Li, Yunliang; H. Ren, Huazhun; M. Yang, Mingzhi

    • Year: 2024

    • Citations: 6

  9. Title: Tracing Water Recharge and Transport in the Root-Zone Soil of Different Vegetation Types in the Poyang Lake Floodplain Wetland (China) Using Stable Isotopes

    • Authors: X. Xu, Xiuli; J. Zhao, Jun; G. Wu, Guangdong; Y. Li, Yunliang; L. Hou, Lili

    • Year: 2024

    • Citations: 1

  10. Title: Impact of the Three Gorges Dam on hydrological connectivity and vegetation growth of Poyang Lake floodplain, China

  • Authors: J. Zeng, Jinfeng; J. Qiu, Jingfeng; Z. Wu, Zeyu; X. Liu, Xinggen; Y. Li, Yunliang

  • Year: 2024

  • Citations: 10

 

 

Mingxing Yang | Groundwater Hydrology | Best Researcher Award

Prof. Mingxing Yang | Groundwater Hydrology | Best Researcher Award

Professor at Guizhou Institute of Technology,china

Prof. Mingxing Yang, Ph.D., is a distinguished researcher in hydrogeology, currently serving as a professor at the Guizhou Institute of Technology, School of Resources and Environmental Engineering. He earned his Ph.D. from Jilin University in 2014 and completed postdoctoral research at the Institute of Geochemistry, Chinese Academy of Sciences. His expertise lies in groundwater pollution remediation, carbon cycling in karst areas, and groundwater resource conservation. Prof. Yang has led multiple prestigious research projects funded by the National Natural Science Foundation of China, the Guizhou Provincial Government, and national high-tech programs such as the 973 and 863 Plans. He has published over 30 papers in important academic journals, contributing significantly to environmental science and hydrogeology. While his research impact is strong at the national level, further international collaborations and recognition could enhance his global standing. His extensive contributions make him a strong candidate for the Best Researcher Award in his field.

Professional Profile 

Education

Prof. Mingxing Yang obtained his Ph.D. in Hydrogeology from Jilin University in 2014, where he specialized in groundwater research and environmental sustainability. Following his doctoral studies, he pursued postdoctoral research at the Institute of Geochemistry, Chinese Academy of Sciences, from 2014 to 2016. His academic training provided him with a strong foundation in hydrogeological processes, groundwater pollution remediation, and environmental geochemistry. His education and research experience have significantly contributed to his expertise in groundwater resource conservation and carbon cycling in karst regions, shaping his career as a leading researcher in environmental science.

Professional Experience

Prof. Mingxing Yang is a highly accomplished researcher in hydrogeology and environmental science. Since completing his postdoctoral research at the Institute of Geochemistry, Chinese Academy of Sciences (2014–2016), he has been serving as a professor at the Guizhou Institute of Technology, School of Resources and Environmental Engineering. His research focuses on groundwater pollution remediation, carbon cycling in karst areas, and groundwater resource conservation. Over the years, he has led and participated in numerous high-profile research projects funded by the National Natural Science Foundation of China, the Guizhou Provincial Government, and national high-tech initiatives such as the 973 and 863 Programs. Through his leadership and contributions, Prof. Yang has played a pivotal role in advancing environmental sustainability and hydrogeological research, establishing himself as a key figure in his field.

Research Interest

Prof. Mingxing Yang’s research interests lie at the intersection of hydrogeology, environmental science, and sustainability. His work primarily focuses on groundwater pollution remediation, aiming to develop effective strategies for protecting water resources from contamination. Additionally, he studies the carbon sink and carbon cycle in karst regions, exploring how these natural systems contribute to carbon sequestration and climate change mitigation. Another key area of his research is groundwater resource conservation, where he investigates sustainable water management practices to ensure long-term water availability. His studies not only address critical environmental challenges but also contribute to the development of policies and technologies for ecological protection and sustainable development.

Award and Honor

While specific awards and honors of Prof. Mingxing Yang are not mentioned, his significant contributions to hydrogeology and environmental science have earned him recognition as a leading researcher in his field. He has successfully led multiple prestigious research projects funded by the National Natural Science Foundation of China, the Guizhou Provincial Government, and major national programs such as the 973 and 863 Plans, reflecting his research excellence. His extensive publication record in important academic journals further highlights his impact on groundwater pollution remediation, carbon cycling in karst areas, and water resource conservation. As a respected professor at the Guizhou Institute of Technology, his work continues to shape the field of environmental sustainability. Additional international recognitions, keynote invitations, and awards could further enhance his global academic standing.

Conclusion

Prof. Mingxing Yang is a highly qualified researcher with significant contributions to hydrogeology, groundwater pollution remediation, and environmental sustainability. His research leadership, funded projects, and publication record make him a strong candidate for the Best Researcher Award. However, expanding his international collaborations and increasing global recognition could further strengthen his case. If the award prioritizes national impact and funded research, he is a very suitable candidate. If it seeks global recognition and influence, he may need additional international contributions.

Publications Top Noted

  • Title: Changing Soil Water Content: Main Trigger of the Multi-Phase Mobilization and Transformation of Petroleum Pollution Components—Insights from the Batch Experiments

    • Authors: Mingxing Yang, Bing Wang, Yubo Xia, Chunling Li, Zhendong Cao

    • Year: 2024

    • Citations: 1

  • Title: Molecular Fingerprinting of the Biodegradation of Petroleum Organic Pollutants in Groundwater and under Site-Specific Environmental Impacts

    • Authors: Mingxing Yang, Yuesuo Yang, Xinyao Yang, Xinqiang Du, Ying Lu

    • Year: 2024

    • Citations: 1

Jun Qiu | Water Security | Innovative Water Solutions Award

Prof. Dr. Jun Qiu | Water Security | Innovative Water Solutions Award

Professor at Beijing Normal University, China

Professor Jun Qiu is a distinguished researcher specializing in atmospheric water harvesting and hydrological innovations, currently serving as a full professor at Beijing Normal University. With a strong academic foundation in Mechanics from Tsinghua University and research experience at Columbia University, he has pioneered the use of acoustophoretic technology for water resource utilization. Leading multiple nationally and internationally funded projects, he has significantly contributed to cloud water resource management, drought intervention, and precipitation enhancement. His work has resulted in 23 granted patents, including five PCT international patents, and the successful commercialization of innovative water solutions, such as the pulse low-frequency acoustic technology, which generated 20 million RMB in revenue. With nearly 70 SCI journal publications and 1,590 citations, his research is widely recognized. While his focus has been China-centric, his technologies have the potential for global impact on water sustainability and drought mitigation.

Professional Profile 

Education

Professor Jun Qiu holds a Bachelor’s, Master’s, and Ph.D. in Mechanics from Tsinghua University, one of China’s most prestigious institutions. During his doctoral studies, he spent a year at Columbia University, further expanding his expertise in advanced hydromechanics and environmental engineering. His interdisciplinary background in mechanics and hydrology has laid a strong foundation for his pioneering research in atmospheric water harvesting and hydrological innovations. His education and international exposure have played a crucial role in shaping his approach to solving global water resource challenges through cutting-edge acoustic and fluid dynamics technologies.

Professional Experience

Professor Jun Qiu has an extensive professional career in hydrology, atmospheric water harvesting, and environmental engineering. He began his academic journey as a researcher at Tsinghua University before becoming a full professor at Beijing Normal University. Over the years, he has led multiple high-impact research projects funded by the National Natural Science Foundation of China and other governmental agencies, focusing on cloud water resource utilization, precipitation enhancement, and water scarcity solutions. His expertise in acoustophoretic technology has resulted in 23 granted patents, with successful commercialization generating millions in revenue. Beyond academia, he has collaborated with industries and governmental bodies to develop practical water solutions, such as the Reflective Air Acoustic Horn and pulse low-frequency acoustic technology. His work has significantly advanced innovative water resource management and has the potential for global application in drought mitigation and environmental conservation.

Research Interest
Professor Jun Qiu’s research interests lie at the intersection of hydrology, atmospheric water harvesting, and environmental fluid mechanics, with a strong focus on acoustic-based water resource technologies. His work explores acoustophoretic mechanisms to enhance cloud water utilization, precipitation conversion, and drought mitigation strategies. He is particularly interested in joint atmospheric-ground water regulation, developing novel acoustic and mechanical approaches to improve water sustainability in arid and river source regions. His research also extends to artificial rain enhancement, mesenchymal stem cell differentiation via acoustics, and advanced meteorological radar technologies. Through interdisciplinary innovation, Professor Qiu aims to provide sustainable, scalable solutions to global water challenges, bridging fundamental hydrological science with practical environmental applications.

Award and Honor

Jun Qiu has received numerous awards and honors in recognition of his outstanding contributions to hydrology and environmental engineering. His innovative research in atmospheric water harvesting and hydrological resource management has earned him prestigious national and international accolades. As a principal investigator of multiple high-impact projects funded by the National Natural Science Foundation of China, his work has been widely recognized for its scientific and industrial significance. Additionally, his pioneering patents and successful technology transfers have garnered industry recognition, further solidifying his reputation as a leader in hydrological innovation. His academic achievements, coupled with his real-world impact, have made him a distinguished figure in the field of water resource science.

Conclusion

Professor Jun Qiu has received numerous awards and honors in recognition of his contributions to hydrology, atmospheric water harvesting, and environmental technology. His groundbreaking research in acoustic-based water resource utilization has earned him prestigious national and international accolades, including funding from the National Natural Science Foundation of China and leadership roles in major government-backed research initiatives. His patented technologies, such as the Reflective Air Acoustic Horn and pulse low-frequency acoustic technology, have been successfully commercialized, generating significant industrial impact. With nearly 70 SCI journal publications and over 1,500 citations, he has been acknowledged for his academic excellence and innovation. His contributions continue to shape advancements in hydrological engineering and sustainable water solutions, making him a leading figure in the field.

Publications Top Noted

Here is the list of publications including Title, Authors, Year, and Citations:

  1. Atmospheric Water Resources and Their Exploitability in the Middle East

    • Authors: F. Li, Fangfang; H. Lu, Houliang; H. Wang, Hongru; P. Sun, Peng; J. Qiu, Jun

    • Year: 2025

    • Citations: 0

  2. Multi-objective optimization of non-fossil energy structure in China towards the carbon peaking and carbon neutrality goals

    • Authors: M. Li, Mengjia; F. Li, Fangfang; J. Qiu, Jun; N. Zhang, Nan; Z. Song, Zhengyu

    • Year: 2024

    • Citations: 0

  3. Long-Term Capturability of Atmospheric Water on a Global Scale (Open Access)

    • Authors: F. Li, Fangfang; H. Lu, Houliang; G. Wang, Guangqian; J. Qiu, Jun

    • Year: 2024

    • Citations: 0

  4. Potential impact of precipitation temporal structure on meteorological drought and vegetation condition: A case study on Qinghai-Tibet Plateau (Open Access)

    • Authors: H. Lu, Houliang; J. Qiu, Jun; B.X. Hu, Bill Xiao; F. Li, Fangfang

    • Year: 2024

    • Citations: 1

  5. Optimizing reservoir operation incorporating ecological demand and stability requirement

    • Authors: J. Qiu, Jun; C. Ma, Cang; H. Wang, Hongru; H. Li, Houjun; F. Li, Fangfang

    • Year: 2024

    • Citations: 0

  6. An improved cross-correlation method for efficient clouds forecasting

    • Authors: H. Zuo, Huimin; J. Qiu, Jun; F. Li, Fangfang

    • Year: 2024

    • Citations: 0

  7. A developed Criminisi algorithm based on particle swarm optimization (PSO-CA) for image inpainting

    • Authors: F. Li, Fangfang; H. Zuo, Huimin; Y. Jia, Yinghui; J. Qiu, Jun

    • Year: 2024

    • Citations: 4

  8. A Remote Sensing Water Information Extraction Method Based on Unsupervised Form Using Probability Function to Describe the Frequency Histogram of NDWI: A Case Study of Qinghai Lake in China (Open Access)

    • Authors: S. Liu, Shiqi; J. Qiu, Jun; F. Li, Fangfang

    • Year: 2024

    • Citations: 5

 

 

 

Guoqian Chen | Water Resources | Excellence in Hydrology Award

Prof. Guoqian Chen | Water Resources | Excellence in Hydrology Award

Professor at Peking University, China

Guoqian Chen is a distinguished researcher in environmental sustainability, climate thermodynamics, and carbon neutrality, with a prolific academic career spanning decades. As a professor at Peking University and a leader in systems ecology, he has significantly contributed to understanding global carbon emissions, renewable energy, and environmental resource management. His research, published in high-impact journals such as Nature Communications and Journal of Fluid Mechanics, has earned him multiple accolades, including the Highly Cited Researcher award from Elsevier and Thomson Reuters. With an H-index of 69 (ISI) and over 15,000 citations, his work has shaped global discussions on climate change and sustainable development. Chen has also played a key role in mentoring future researchers, supervising over 40 PhD students, and serving on editorial boards of renowned journals. As a frequent keynote speaker at international conferences, his influence extends beyond academia, driving policy discussions on global carbon management. While his work is primarily theoretical, expanding collaborations with industry and policymakers could further enhance its real-world impact. With his extensive contributions and international recognition, he is a strong contender for the Best Researcher Award.

Professional Profile

Education

Guoqian Chen holds a Ph.D. in Engineering from Peking University, Beijing, China, which he earned in 1989. Prior to that, he completed both his Bachelor’s (1982) and Master’s (1985) degrees in Engineering at Huazhong University of Science and Technology, Wuhan, China. His strong academic foundation in engineering and fluid dynamics has paved the way for his distinguished career in environmental sustainability, climate thermodynamics, and carbon neutrality research.

Professional Experience

Guoqian Chen has an extensive professional career spanning over three decades, primarily in fluid dynamics, thermodynamics, and environmental sustainability. Since 1996, he has been a Professor at Peking University, where he founded and directs the Laboratory of Systems Ecology and Sustainability Science. He also serves as a Distinguished Adjunct Professor at Macau University of Science and Technology since 2022. His international experience includes positions as a Visiting Professor at Hong Kong University (1995-1998) and a Visiting Scientist at the University of Pittsburgh, USA (1993-1995). He previously held faculty positions at Beijing University of Aeronautics and Astronautics (1991-1993) and the Institute of Mechanics, Chinese Academy of Sciences (1989-1991). Additionally, he has contributed to global research collaborations as a Distinguished Adjunct Professor at King Abdulaziz University, Saudi Arabia (2013-2015, 2019-2020). His professional journey reflects his leadership in advancing climate science, carbon neutrality, and environmental resource management through interdisciplinary research and academic mentorship.

Research Interest

Guoqian Chen’s research interests span a wide range of topics in climate thermodynamics, carbon neutrality, renewable energy, and environmental sustainability. His work focuses on planetary thermodynamics, radiation heat engines, and Earth’s entropy budget, providing critical insights into the fundamental principles of climate science. He specializes in carbon metrics, decarbonization management, and ecological flux assessments, using systems ecology, life cycle analysis (SLCA), and input-output modeling to evaluate environmental impacts. His research also extends to environmental systems modeling, computational fluid dynamics (CFD), eco-hydrodynamics, and micro-swimmer motility, contributing to both theoretical and applied aspects of sustainability science. Additionally, he explores global trade imbalances in energy, water, land use, and carbon emissions, influencing policy discussions on international climate action. Through his interdisciplinary approach, Chen integrates engineering, economics, and environmental science to address pressing global challenges related to climate change and sustainable resource management.

Award and Honor

Guoqian Chen has received numerous prestigious awards and honors in recognition of his outstanding contributions to environmental sustainability, climate science, and carbon neutrality research. He has been consistently named an Elsevier Most Cited Chinese Researcher from 2016 to 2024, highlighting the global impact of his work. In 2014, he was recognized as one of The World’s Most Influential Scientific Minds by Thomson Reuters and received the Highly Cited Researchers Award and China Citation Laureates Award for his extensive academic influence. His work has also earned him the ISI Highly Cited Researcher Award (2013, 2014, 2019) and the Elsevier Atlas Award (2018). In 2012, he received the National Award for Science and Technology Progress (Second Prize), further solidifying his reputation as a leading researcher. His groundbreaking contributions to environmental and climate studies have also been acknowledged through a NATURE Research Highlight (2023). These accolades reflect his exceptional impact on academia, policy, and global discussions on sustainability and climate change.

Conclusion

Guoqian Chen is an exceptional candidate for the Best Researcher Award based on his pioneering research, global recognition, interdisciplinary impact, and leadership in environmental and sustainability science. His extensive publications and citation record reflect a highly influential career. While his work is primarily academic and theoretical, expanding collaborations with industry and policymakers could further enhance the real-world impact. Overall, he is a strong contender for the award.

Publications Top Noted

  1. The benefits and burdens of wind power systems in reaching China’s renewable energy goals: Implications from resource and environment assessment

    • Authors: Yilin Li, Xu Tang, Mingkai Liu, Guoqian Chen

    • Year: 2024

    • Citations: 2

  2. Livestock sector can threaten planetary boundaries without regionally differentiated strategies

    • Authors: Chaohui Li, Prajal Pradhan, Xudong Wu, Klaus Hubacek, Guoqian Chen

    • Year: 2024

    • Citations: 1

  3. Transient dispersion of settling gyrotactic microorganisms in an open channel flow

    • Authors: Hanhan Zeng, Weiquan Jiang, Bohan Wang, Zhi Li, Guoqian Chen

    • Year: 2024

    • Citations: 1

  4. Life cycle techno-economic-environmental optimization for capacity design and operation strategy of grid-connected building distributed multi-energy system

    • Authors: Huizhen Han, Yongkai Ge, Qingrui Wang, Xi Chen, Peiru Jian

    • Year: 2024

    • Citations: 2

  5. Migration of confined micro-swimmers subject to anisotropic diffusion

    • Authors: Mingyang Guan, Weiquan Jiang, Luoyi Tao, Guoqian Chen, Joseph Hun Wei Lee

    • Year: 2024

    • Citations: 4

  6. Streamwise dispersion of soluble matter in solvent flowing through a tube

    • Authors: Mingyang Guan, Guoqian Chen

    • Year: 2024

    • Citations: 6

  7. Characterizing suspended particle dispersion in wetland flows: Impact of settling velocity and vegetation factor

    • Authors: Jinlan Guo, Shan Huang, Joseph Hun Wei Lee, Guoqian Chen

    • Year: 2024

    • Citations: 2

  8. Understanding Prandtl fluid flow in conduits with slip boundary conditions: Implications for engineering and physiology

    • Authors: Muhammad Ijaz Khan, S. Ravikumar, Kodi Raghunath, Guoqian Chen, Luoyi Tao

    • Year: 2023

    • Citations: 17

  9. Globalization of forest land use: Increasing threats on climate-vulnerable regions

    • Authors: Siyi Kan, Bin Chen, Guoqian Chen

    • Year: 2023

    • Citations: 2

  10. Pre-asymptotic dispersion of active particles through a vertical pipe: the origin of hydrodynamic focusing

  • Authors: Mingyang Guan, Weiquan Jiang, Bohan Wang, Zhi Li, Guoqian Chen

  • Year: 2023

  • Citations: 7

Tatek Wondimu Negash | Water Resources | Best Researcher Award- 1074

Tatek Wondimu Negash | Water Resources | Best Researcher Award

Agricultural Water Management Researcher at Ethiopia Institute Of Agricultural Research, Melkassa Agricultural Research Center, Ethiopia

Tatek Wondimu Negash is a highly skilled water resource and irrigation engineer with over eight years of research experience in agricultural water management, hydrology, land use, and climate change. Holding a BSc in Water Resources and Irrigation Engineering and an MPhil in Irrigation and Drainage Engineering, his work focuses on optimizing irrigation efficiency and improving water use in semi-arid regions. He has authored multiple peer-reviewed publications on irrigation water allocation, evapotranspiration, and watershed hydrology, demonstrating his expertise in hydrological modeling and data analysis using tools like ArcGIS, ArcSWAT, and AquaCrop. As a researcher at the Ethiopia Institute of Agricultural Research, he collaborates with farmers, government agencies, and research institutions to implement sustainable irrigation practices. His contributions have earned him recognition, including a prestigious Master’s Scholarship from WACWISA, Ghana, and an Editorial Board membership for the International Analytical Chemistry Awards. With strong technical skills, stakeholder engagement experience, and a commitment to advancing water resource management, Tatek stands out as a leading researcher in his field.

Professional Profile 

Education

Tatek Wondimu Negash holds a Bachelor of Science (BSc) degree in Water Resources and Irrigation Engineering from Hawassa University, Ethiopia, where he developed a strong foundation in agricultural water management and irrigation system design. He further advanced his expertise by earning a Master of Philosophy (MPhil) in Irrigation and Drainage Engineering from the University for Development Studies in Ghana. His master’s research focused on the impact of land use and land cover change on watershed hydrology, reflecting his deep interest in sustainable water resource management. Throughout his academic journey, he has acquired specialized training in hydrological modeling, irrigation technologies, and integrated water resource management, enhancing his skills in data analysis and research methodologies. His education, combined with professional development courses in Python, Jupyter, and data analysis, has equipped him with the technical proficiency needed for high-impact research

Professional Experience

Tatek Wondimu Negash is an experienced water resource and irrigation engineer and researcher at the Ethiopia Institute of Agricultural Research (EIAR), Melkassa Agricultural Research Center. With over eight years of professional experience, he has been actively involved in developing research proposals and conducting studies on agricultural water management, hydrology, land use, and climate change. His work focuses on optimizing irrigation efficiency by evaluating and demonstrating appropriate irrigation technologies, determining crop water requirements, and improving irrigation scheduling. Tatek has played a key role in designing and supervising various irrigation projects, including sprinkler, drip, and surface irrigation systems, while also providing technical support for the construction of irrigation canals, drainage systems, and water harvesting structures. Additionally, he has extensive experience in hydrological modeling and data analysis, utilizing advanced tools such as ArcGIS, ArcSWAT, DSSAT, and AquaCrop to enhance water management practices. Beyond research, he collaborates with farmers, government agencies, and research institutions, facilitating training programs and knowledge-sharing initiatives to promote sustainable agricultural water use. His work contributes significantly to improving irrigation strategies and water conservation efforts in Ethiopia and beyond.

Research Interest

Tatek Wondimu Negash’s research interests revolve around agricultural water management, hydrology, land use, and climate change, with a strong focus on optimizing irrigation efficiency and sustainable water resource utilization. He is particularly interested in studying soil-water-plant relationships to determine crop water requirements, improve irrigation scheduling, and enhance water use efficiency in semi-arid regions. His work also explores the impact of land use and land cover changes on watershed hydrology, employing advanced hydrological modeling techniques using tools such as ArcGIS, ArcSWAT, DSSAT, and AquaCrop. Additionally, he is engaged in developing innovative irrigation technologies and management practices that support smallholder farmers and large-scale irrigation projects. Through his research, Tatek aims to contribute to climate-resilient agricultural practices by integrating data-driven solutions and evidence-based decision-making for sustainable water resource management. His interdisciplinary approach bridges the gap between scientific research and practical applications, ensuring that his findings have a tangible impact on agricultural productivity and water conservation.

Award and Honor

Tatek Wondimu Negash has received notable awards and honors in recognition of his contributions to agricultural water management and irrigation research. He was awarded the Master’s Scholarship by the West Africa Center for Water, Irrigation, and Sustainable Agriculture (WACWISA), Ghana, funded by the World Bank under the African Centre of Excellence Impact (ACE Impact) Project, which supported his postgraduate studies in irrigation and drainage engineering. His research excellence has also earned him a place on the Editorial Board of the International Analytical Chemistry Awards (2025), recognizing his expertise in scientific research and analysis. Additionally, he has participated in prestigious professional development programs, including specialized training in integrated water resources management, eco-hydrology, and canal performance improvement conducted by international institutions. These achievements highlight his dedication to advancing water resource management and underscore his growing influence in the field of irrigation engineering and hydrological research.

Conclusion

Tatek Wondimu Negash is a strong candidate for the Best Researcher Award due to his extensive research contributions, technical expertise, and impact on agricultural water management. His peer-reviewed publications, irrigation research, modeling expertise, and stakeholder engagement highlight his suitability. While he could enhance his research profile with more international collaborations, higher citation impact, and independent research funding, his overall achievements make him a worthy contender for the award.

Publications Top Noted

Title: Optimal Irrigation Water Allocation for Enhanced Productivity of Haricot Bean (Phaseolus vulgaris) and Economic Gain: An Experiment Conducted in the Semi-Arid Area of Ethiopia

Authors:

  • Tatek Wondimu Negash (T.W. Negash)
  • Abera Tesfaye Tefera (A.T. Tefera)
  • Gobena Dirirsa Bayisa (G.D. Bayisa)
  • Tigist Damtew Worku (T.D. Worku)
  • Aynalem Gurms (A. Gurms)

Year: 2025

Journal: Journal of Agriculture and Food Research

Citations: 0 (as of now)