Yunliang Li | Water Resources | Best Researcher Award

Prof. Yunliang Li | Water Resources | Best Researcher Award

Professor at Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, China

Yunliang Li is a distinguished researcher specializing in hydrological studies of floodplain lakes, with significant contributions to understanding surface-groundwater interactions, lake flood-pulse processes, and hydrological connectivity in highly heterogeneous floodplain settings. He has independently developed the Lake-Catchment Simulator v1.0, a large-scale numerical model that assesses the hydrodynamic and environmental responses of floodplain lakes to natural and human disturbances. With 71 peer-reviewed publications (including 41 SCI papers) and over 1352 citations, along with two academic monographs, his work has gained substantial recognition. He has received multiple prestigious awards, including the Second Prize for Scientific and Technological Progress from the China National Committee on Large Dams and the Changjiang Technology and Economy Society, as well as honors from the Chinese Academy of Sciences and the Ministry of Water Resources Science and Technology Talent. Holding 23 patents and software copyrights, his research not only advances scientific understanding but also contributes to practical environmental management. His future work aims to deepen insights into the impact of natural and anthropogenic disturbances on floodplain hydrodynamics, further cementing his influence in the field.

Professional Profile 

Education

Yunliang Li holds a strong academic background in hydrology and water resources, with advanced degrees that have laid the foundation for his expertise in floodplain lake dynamics and hydrological connectivity. He obtained his Ph.D. in Hydrology and Water Resources from a leading institution, where he conducted in-depth research on surface-groundwater interactions and floodplain hydrodynamics. Prior to that, he earned his Master’s and Bachelor’s degrees in related fields, equipping him with a solid understanding of eco-hydrology, numerical modeling, and environmental water management. His academic journey has been marked by interdisciplinary learning, innovative research, and technical skill development, enabling him to make substantial contributions to the field of hydrological science.

Professional Experience

Yunliang Li has an extensive professional background in hydrological research, focusing on floodplain lake dynamics, surface-groundwater interactions, and eco-hydrological modeling. He has been actively engaged in scientific research and technological innovation, contributing significantly to the development of hydrological connectivity theories and large-scale numerical simulation tools such as the Lake-Catchment Simulator v1.0. Throughout his career, he has led and participated in numerous high-impact research projects, systematically assessing the effects of extreme hydrological events and human activities on floodplain lakes like Poyang Lake. His expertise has been recognized through multiple prestigious awards and leadership roles in scientific committees, research institutions, and environmental assessment initiatives. In addition to his academic contributions, he has played a key role in patent development and software innovation, further bridging the gap between scientific research and practical water resource management. His ongoing work continues to advance the understanding of hydrodynamic processes, influencing both national and international water management strategies.

Research Interest

Yunliang Li’s research interests lie at the intersection of hydrology, eco-hydrodynamics, and environmental water management, with a particular focus on floodplain lake systems. He is dedicated to understanding surface-groundwater interactions, the hydrological connectivity of heterogeneous floodplains, and the impacts of natural and anthropogenic disturbances on lake hydrodynamics. His work involves developing advanced numerical modeling techniques, such as the Lake-Catchment Simulator v1.0, to assess hydrodynamic and environmental changes under extreme hydrological events and human interventions. Additionally, he is deeply interested in hydrological regulation, ecological restoration, and water resource sustainability, aiming to bridge theoretical research with practical applications for flood risk management, ecosystem conservation, and climate adaptation strategies. Through his research, he seeks to provide scientific insights and technical solutions for better managing floodplain lakes and water environments in response to global environmental changes.

Award nd Honor

Yunliang Li has received numerous prestigious awards and honors in recognition of his outstanding contributions to hydrological research and water resource management. He was awarded the Second Prize for Scientific and Technological Progress by both the China National Committee on Large Dams and the Changjiang Technology and Economy Society, highlighting his pioneering work in floodplain hydrodynamics and hydrological connectivity. He has also been honored as an Excellent Member of the Youth Innovation Promotion Association of the Chinese Academy of Sciences (CAS) and was selected for the Jiangxi Province Thousand Talents Program, demonstrating his influence in advancing eco-hydrological research. Additionally, he has been recognized by the Ministry of Water Resources Science and Technology Talent Program for his contributions to water science and technology innovation. With 23 patents and software copyrights, his research has not only expanded scientific knowledge but also provided practical solutions for water resource management and environmental sustainability. These accolades underscore his leadership and impact in the field of hydrology.

Conclusion

Yunliang Li is a highly deserving candidate for the Best Researcher Award. His groundbreaking contributions to hydrological connectivity, floodplain lake dynamics, and numerical modeling demonstrate excellence. His publication record, patents, and national recognition underscore his impact. Strengthening international collaborations and interdisciplinary applications could further enhance his standing. Given his contributions and achievements, he is a strong contender for this award.

Publications Top Noted

  1. Title: A distributed and process-based model coupling water-sediment-antibiotic interactions to simulate dynamic source-transport-fate of antibiotics at catchment scale

    • Authors: H. Xie, Hui; M. Shang, Meiqi; J. Dong, Jianwei; Y. Li, Yunliang; X.J. Lai, Xijun Jun

    • Year: 2025

    • Citations: 1

  2. Title: How do agricultural polders modulate nutrient dynamics under extreme flooding: Insights for water management in lowland areas

    • Authors: H. Xie, Hui; Y. Li, Yunliang; M. Shang, Meiqi; Y. Wang, Yang; X.J. Lai, Xijun Jun

    • Year: 2025

    • Citations: 0

  3. Title: Disentangling the spatially combined and temporally lagged influences of climate oscillations on seasonal droughts in the East Asian monsoon influenced Poyang Lake Basin

    • Authors: Z. Xing, Zikang; J. Wei, Jianhui; Y. Li, Yunliang; P. Laux, Patrick; H. Kunstmann, Harald

    • Year: 2024

    • Citations: 3

  4. Title: Hydrological Modeling to Unravel the Spatiotemporal Heterogeneity and Attribution of Baseflow in the Yangtze River Source Area, China

    • Authors: H. Ren, Huazhun; G. Wu, Guangdong; L. Shu, Longchang; Y. Li, Yunliang; Y. Wang, Yuxuan

    • Year: 2024

    • Citations: 0

  5. Title: Unravelling groundwater budget in the Poyang floodplain system under intensifying seasonal lake inundation

    • Authors: W. Jiang, Wenyu; B. Liu, Bo; Y. Li, Yunliang; C. Lu, Chengpeng; L. Shu, Longchang

    • Year: 2024

    • Citations: 2

  6. Title: The effects of damming and dam regulation on a river–lake-aquifer system: 3D groundwater flow modeling of Poyang Lake (China)

    • Authors: W. Jiang, Wenyu; B. Liu, Bo; Y. Li, Yunliang; C. Lu, Chengpeng; L. Shu, Longchang

    • Year: 2024

    • Citations: 3

  7. Title: Unveiling ionic structure in the LiF-NdF3 molten salt system as determined by Raman spectroscopy and quantum chemical calculations

    • Authors: M. Lin, Ming; J. Guan, Jinzhao; M. Aziz Diop, Mouhamadou; Y. Li, Yunliang; P. Chen, Peng

    • Year: 2024

    • Citations: 2

  8. Title: Revealing temporal variation of baseflow and its underlying causes in the source region of the Yangtze River (China)

    • Authors: G. Wu, Guangdong; J. Zhang, Jianyun; Y. Li, Yunliang; H. Ren, Huazhun; M. Yang, Mingzhi

    • Year: 2024

    • Citations: 6

  9. Title: Tracing Water Recharge and Transport in the Root-Zone Soil of Different Vegetation Types in the Poyang Lake Floodplain Wetland (China) Using Stable Isotopes

    • Authors: X. Xu, Xiuli; J. Zhao, Jun; G. Wu, Guangdong; Y. Li, Yunliang; L. Hou, Lili

    • Year: 2024

    • Citations: 1

  10. Title: Impact of the Three Gorges Dam on hydrological connectivity and vegetation growth of Poyang Lake floodplain, China

  • Authors: J. Zeng, Jinfeng; J. Qiu, Jingfeng; Z. Wu, Zeyu; X. Liu, Xinggen; Y. Li, Yunliang

  • Year: 2024

  • Citations: 10

 

 

Guohong Fang | Coastal Hydrology | Surface Water Dynamics Award

Prof. Guohong Fang | Coastal Hydrology | Surface Water Dynamics Award

Retired Professor at First Institute of Oceanography, Ministry of Natural Resouces, China

Academician Guohong Fang, born in December 1939 in Ruian, Zhejiang, China, is a distinguished physical oceanographer known for his pioneering research in ocean tides, ocean circulation, and numerical modeling. A graduate of Nankai University’s Department of Physics, he has made significant contributions to the study of tidal currents, developing innovative methods for their analysis and prediction. His work has led to accurate models for tides in the seas adjacent to China and the creation of advanced regional tide prediction systems. He has proposed fundamental oceanographic concepts, including the Taiwan-Tsushima-Soya current system and the South China Sea Throughflow. With over 200 published research papers and multiple national awards, his contributions have been widely recognized, culminating in his election as a member of the Chinese Academy of Engineering in 2007. His groundbreaking discoveries continue to shape the field of oceanography.

Professional Profile 

Education

Guohong Fang pursued his higher education at Nankai University, one of China’s prestigious institutions, where he graduated from the Department of Physics. His academic background in physics provided him with a strong foundation for his later work in physical oceanography. His studies equipped him with expertise in mathematical modeling, fluid dynamics, and oceanic processes, which became the cornerstone of his research in ocean tides, circulation, and numerical modeling. His education played a crucial role in shaping his career as a leading oceanographer, enabling him to develop innovative methods for tide analysis and prediction, as well as groundbreaking contributions to the understanding of ocean currents.

Professional Experience

Guohong Fang has built an illustrious career as a physical oceanographer at the First Institute of Oceanography, Ministry of Natural Resources, where he has dedicated his expertise to advancing the understanding of ocean tides, circulation, and numerical modeling. Throughout his career, he has developed innovative methods for analyzing and predicting tidal currents, establishing accurate models for the seas adjacent to China and creating successive generations of regional tide prediction systems. His pioneering work includes offering a general solution to the Taylor problem, elucidating the vertical variation of tidal currents, and uncovering the frictional nonlinearity inherent in tidal phenomena. Fang’s groundbreaking studies have led to the first quantitative estimates of water transports in critical regions like the Taiwan Strait and the East China Sea, along with the proposal of influential oceanographic concepts such as the Taiwan-Tsushima-Soya current system and the South China Sea Throughflow. His extensive contributions, recognized through over 200 publications and multiple national awards, underscore his role as a leader in his field and have cemented his reputation within the scientific community.

Research Interest

Guohong Fang’s research interests lie at the intersection of physical oceanography and numerical modeling, with a particular focus on the dynamics of ocean tides and tidal currents. He is dedicated to developing innovative analytical methods and sophisticated computational models that enhance the prediction and understanding of tidal behaviors in complex marine environments. His work encompasses investigating the fundamental principles governing ocean circulation, exploring the intricate interactions between tidal forces and frictional nonlinearity, and quantifying water transport mechanisms in key regions such as the Taiwan Strait and the East China Sea. Through these efforts, Fang aims to advance our understanding of the ocean’s role in the broader climate system and improve the accuracy of marine forecasting systems.

Award and Honor

Guohong Fang has been the recipient of numerous prestigious awards and honors throughout his career, reflecting his significant contributions to the field of physical oceanography. His groundbreaking work has earned him multiple National Natural Science Awards and National Science and Technology Progress Awards, acknowledging his advancements in the analysis and prediction of ocean tides and tidal currents. In recognition of his influential research and innovative methodologies, he was elected as a member of the Chinese Academy of Engineering in 2007. These accolades not only highlight his scientific achievements but also underscore his enduring impact on oceanographic research and the broader scientific community.

Conclusion

Academician Guohong Fang has made significant contributions to physical oceanography, with groundbreaking research, innovative methodologies, and prestigious national recognition. Given his impact on ocean tide modeling, current predictions, and fundamental discoveries, he is a strong candidate for the Best Researcher Award.

Publications Top Noted

  1. Title: Field measurements of turbulent mixing south of the Lombok Strait, Indonesia
    Authors: R.D. Susanto, R. Dwi; Z. Wei, Zexun; P.D. Santoso, Priyadi Dwi; Y. Li, Ying; G. Fang, Guohong
    Year: 2024
    Citations: 1

  2. Title: A comparison of global and regional ocean tide models with tide gauges in the East Asian marginal seas
    Authors: X. Xu, Xiaoqing; H. Pan, Haidong; F. Teng, Fei; G. Fang, Guohong; Z. Wei, Zexun
    Year: 2024
    Citations: 3

  3. Title: Shallow water tides induced by frictional nonlinearity in the Bohai and Yellow Seas
    Authors: F. Teng, Fei; G. Fang, Guohong; X. Xu, Xiaoqing; Y. Zhu, Yaohua
    Year: 2023
    Citations: 3

  4. Title: A comparative study of sea surface wind datasets and their induced circulation characteristics in the North Pacific Ocean
    Authors: D. Wang, Dingqi; G. Fang, Guohong; T. Xu, Tengfei; Z. Wei, Zexun; Y. Wang, Yonggang (and others)
    Year: 2023
    Citations: 1

  5. Title: Satellite-detected phytoplankton blooms in the Japan/East Sea during the past two decades: Magnitude and timing
    Authors: D. Wang, Dingqi; G. Fang, Guohong; S. Jiang, Shumin; Y. Wang, Yonggang; T. Xu, Tengfei (and others)
    Year: 2022
    Citations: 2

  6. Title: Characteristics of Marine Heatwaves in the Japan/East Sea
    Authors: D. Wang, Dingqi; T. Xu, Tengfei; G. Fang, Guohong; Z. Wei, Zexun; Y. Wang, Yonggang (and others)
    Year: 2022
    Citations: 25

  7. Title: Accuracy assessment of global vertical displacement loading tide models in the Bohai Sea, Yellow Sea, East China Sea and surrounding areas
    Authors: X. Xu, Xiaoqing; Z. Wei, Zexun; F. Teng, Fei; X. Gao, Xiumin; G. Fang, Guohong
    Year: 2022
    Citations:0