Yunliang Li | Water Resources | Best Researcher Award

Prof. Yunliang Li | Water Resources | Best Researcher Award

Professor at Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, China

Yunliang Li is a distinguished researcher specializing in hydrological studies of floodplain lakes, with significant contributions to understanding surface-groundwater interactions, lake flood-pulse processes, and hydrological connectivity in highly heterogeneous floodplain settings. He has independently developed the Lake-Catchment Simulator v1.0, a large-scale numerical model that assesses the hydrodynamic and environmental responses of floodplain lakes to natural and human disturbances. With 71 peer-reviewed publications (including 41 SCI papers) and over 1352 citations, along with two academic monographs, his work has gained substantial recognition. He has received multiple prestigious awards, including the Second Prize for Scientific and Technological Progress from the China National Committee on Large Dams and the Changjiang Technology and Economy Society, as well as honors from the Chinese Academy of Sciences and the Ministry of Water Resources Science and Technology Talent. Holding 23 patents and software copyrights, his research not only advances scientific understanding but also contributes to practical environmental management. His future work aims to deepen insights into the impact of natural and anthropogenic disturbances on floodplain hydrodynamics, further cementing his influence in the field.

Professional Profile 

Education

Yunliang Li holds a strong academic background in hydrology and water resources, with advanced degrees that have laid the foundation for his expertise in floodplain lake dynamics and hydrological connectivity. He obtained his Ph.D. in Hydrology and Water Resources from a leading institution, where he conducted in-depth research on surface-groundwater interactions and floodplain hydrodynamics. Prior to that, he earned his Master’s and Bachelor’s degrees in related fields, equipping him with a solid understanding of eco-hydrology, numerical modeling, and environmental water management. His academic journey has been marked by interdisciplinary learning, innovative research, and technical skill development, enabling him to make substantial contributions to the field of hydrological science.

Professional Experience

Yunliang Li has an extensive professional background in hydrological research, focusing on floodplain lake dynamics, surface-groundwater interactions, and eco-hydrological modeling. He has been actively engaged in scientific research and technological innovation, contributing significantly to the development of hydrological connectivity theories and large-scale numerical simulation tools such as the Lake-Catchment Simulator v1.0. Throughout his career, he has led and participated in numerous high-impact research projects, systematically assessing the effects of extreme hydrological events and human activities on floodplain lakes like Poyang Lake. His expertise has been recognized through multiple prestigious awards and leadership roles in scientific committees, research institutions, and environmental assessment initiatives. In addition to his academic contributions, he has played a key role in patent development and software innovation, further bridging the gap between scientific research and practical water resource management. His ongoing work continues to advance the understanding of hydrodynamic processes, influencing both national and international water management strategies.

Research Interest

Yunliang Li’s research interests lie at the intersection of hydrology, eco-hydrodynamics, and environmental water management, with a particular focus on floodplain lake systems. He is dedicated to understanding surface-groundwater interactions, the hydrological connectivity of heterogeneous floodplains, and the impacts of natural and anthropogenic disturbances on lake hydrodynamics. His work involves developing advanced numerical modeling techniques, such as the Lake-Catchment Simulator v1.0, to assess hydrodynamic and environmental changes under extreme hydrological events and human interventions. Additionally, he is deeply interested in hydrological regulation, ecological restoration, and water resource sustainability, aiming to bridge theoretical research with practical applications for flood risk management, ecosystem conservation, and climate adaptation strategies. Through his research, he seeks to provide scientific insights and technical solutions for better managing floodplain lakes and water environments in response to global environmental changes.

Award nd Honor

Yunliang Li has received numerous prestigious awards and honors in recognition of his outstanding contributions to hydrological research and water resource management. He was awarded the Second Prize for Scientific and Technological Progress by both the China National Committee on Large Dams and the Changjiang Technology and Economy Society, highlighting his pioneering work in floodplain hydrodynamics and hydrological connectivity. He has also been honored as an Excellent Member of the Youth Innovation Promotion Association of the Chinese Academy of Sciences (CAS) and was selected for the Jiangxi Province Thousand Talents Program, demonstrating his influence in advancing eco-hydrological research. Additionally, he has been recognized by the Ministry of Water Resources Science and Technology Talent Program for his contributions to water science and technology innovation. With 23 patents and software copyrights, his research has not only expanded scientific knowledge but also provided practical solutions for water resource management and environmental sustainability. These accolades underscore his leadership and impact in the field of hydrology.

Conclusion

Yunliang Li is a highly deserving candidate for the Best Researcher Award. His groundbreaking contributions to hydrological connectivity, floodplain lake dynamics, and numerical modeling demonstrate excellence. His publication record, patents, and national recognition underscore his impact. Strengthening international collaborations and interdisciplinary applications could further enhance his standing. Given his contributions and achievements, he is a strong contender for this award.

Publications Top Noted

  1. Title: A distributed and process-based model coupling water-sediment-antibiotic interactions to simulate dynamic source-transport-fate of antibiotics at catchment scale

    • Authors: H. Xie, Hui; M. Shang, Meiqi; J. Dong, Jianwei; Y. Li, Yunliang; X.J. Lai, Xijun Jun

    • Year: 2025

    • Citations: 1

  2. Title: How do agricultural polders modulate nutrient dynamics under extreme flooding: Insights for water management in lowland areas

    • Authors: H. Xie, Hui; Y. Li, Yunliang; M. Shang, Meiqi; Y. Wang, Yang; X.J. Lai, Xijun Jun

    • Year: 2025

    • Citations: 0

  3. Title: Disentangling the spatially combined and temporally lagged influences of climate oscillations on seasonal droughts in the East Asian monsoon influenced Poyang Lake Basin

    • Authors: Z. Xing, Zikang; J. Wei, Jianhui; Y. Li, Yunliang; P. Laux, Patrick; H. Kunstmann, Harald

    • Year: 2024

    • Citations: 3

  4. Title: Hydrological Modeling to Unravel the Spatiotemporal Heterogeneity and Attribution of Baseflow in the Yangtze River Source Area, China

    • Authors: H. Ren, Huazhun; G. Wu, Guangdong; L. Shu, Longchang; Y. Li, Yunliang; Y. Wang, Yuxuan

    • Year: 2024

    • Citations: 0

  5. Title: Unravelling groundwater budget in the Poyang floodplain system under intensifying seasonal lake inundation

    • Authors: W. Jiang, Wenyu; B. Liu, Bo; Y. Li, Yunliang; C. Lu, Chengpeng; L. Shu, Longchang

    • Year: 2024

    • Citations: 2

  6. Title: The effects of damming and dam regulation on a river–lake-aquifer system: 3D groundwater flow modeling of Poyang Lake (China)

    • Authors: W. Jiang, Wenyu; B. Liu, Bo; Y. Li, Yunliang; C. Lu, Chengpeng; L. Shu, Longchang

    • Year: 2024

    • Citations: 3

  7. Title: Unveiling ionic structure in the LiF-NdF3 molten salt system as determined by Raman spectroscopy and quantum chemical calculations

    • Authors: M. Lin, Ming; J. Guan, Jinzhao; M. Aziz Diop, Mouhamadou; Y. Li, Yunliang; P. Chen, Peng

    • Year: 2024

    • Citations: 2

  8. Title: Revealing temporal variation of baseflow and its underlying causes in the source region of the Yangtze River (China)

    • Authors: G. Wu, Guangdong; J. Zhang, Jianyun; Y. Li, Yunliang; H. Ren, Huazhun; M. Yang, Mingzhi

    • Year: 2024

    • Citations: 6

  9. Title: Tracing Water Recharge and Transport in the Root-Zone Soil of Different Vegetation Types in the Poyang Lake Floodplain Wetland (China) Using Stable Isotopes

    • Authors: X. Xu, Xiuli; J. Zhao, Jun; G. Wu, Guangdong; Y. Li, Yunliang; L. Hou, Lili

    • Year: 2024

    • Citations: 1

  10. Title: Impact of the Three Gorges Dam on hydrological connectivity and vegetation growth of Poyang Lake floodplain, China

  • Authors: J. Zeng, Jinfeng; J. Qiu, Jingfeng; Z. Wu, Zeyu; X. Liu, Xinggen; Y. Li, Yunliang

  • Year: 2024

  • Citations: 10

 

 

Yuxiang Ying | Ecohydrology | Best Researcher Award

Dr. Yuxiang Ying | Ecohydrology | Best Researcher Award

Student at ZheJiang University, China

Yuxiang Ying, a doctoral student at Zhejiang University specializing in fluid mechanics, has made notable contributions to the study of microswimmers in flow fields. His research, published in SCI-indexed journals, explores the hydrodynamic behavior of elongated microswimmers, with potential applications in bioinspired microrobots and medical technologies like precision drug delivery. His work provides valuable theoretical insights into microswimmer efficiency and motion dynamics. While his publication record is strong, he lacks industry collaborations, patents, and professional memberships, which could further enhance his research impact. Overall, his contributions make him a strong candidate for the Best Researcher Award, particularly in theoretical and academic research.

Professional Profile 

Education

Yuxiang Ying is currently pursuing a doctoral degree in fluid mechanics at Zhejiang University, one of China’s leading institutions. His research focuses on the hydrodynamic characteristics of microswimmers in flow fields, contributing to advancements in bioinspired microrobotics and medical applications. Through his academic journey, he has developed expertise in computational modeling and theoretical analysis, leading to multiple publications in reputable scientific journals. His education has provided him with a strong foundation in fluid dynamics, mathematical modeling, and simulation techniques, equipping him with the skills necessary for innovative research in his field.

Professional Experience

As a doctoral researcher at Zhejiang University, Yuxiang Ying has been actively engaged in advanced research on fluid mechanics, with a particular focus on the hydrodynamic behavior of microswimmers in flow fields. His work involves computational modeling and simulations to analyze swimming efficiency, velocity, and interactions with surfaces, contributing to the development of bioinspired microrobots for medical applications. While he has primarily focused on academic research, his findings have been published in SCI-indexed journals, demonstrating his ability to contribute to the scientific community. Although he has not yet undertaken industry projects, patents, or editorial roles, his research potential and growing expertise position him as a promising scholar in his field.

Research Interest

Yuxiang Ying’s research interests lie in the field of fluid mechanics, with a particular focus on the hydrodynamic behavior of microswimmers in complex flow environments. His work explores the swimming efficiency, velocity, and interaction dynamics of microscale robotic swimmers, which have potential applications in biomedical engineering, such as targeted drug delivery and microfluidic systems. Through computational modeling and theoretical analysis, he aims to uncover fundamental principles governing microswimmer motion, contributing to the design and optimization of bioinspired microrobotic systems. His research bridges the gap between fluid dynamics and biomedical applications, offering valuable insights for the development of next-generation microrobots.

Conclusion

Yuxiang Ying demonstrates strong research potential with impactful work in fluid mechanics and microswimmers. His research contributions and publications make him a competitive candidate for the Best Researcher Award. However, expanding his industry engagement, collaborations, and professional memberships could further strengthen his nomination. If the award prioritizes journal publications and theoretical contributions, he is a suitable candidate; however, if practical applications, patents, and collaborations are key factors, he may need additional credentials to be a top contender.

Publications Top Noted

Hydrodynamic behavior of inertial elongated microswimmers in a horizontal channel

International Journal of Non-Linear Mechanics
2024-11 | Journal article
Contributors: Yuxiang Ying; Geng Guan; Jianzhong Lin

Source:check_circle

Crossref

Study of sedimentation characteristics of an elliptical squirmer in a vertical channel

Physica Scripta
2024-02-01 | Journal article
Contributors: Yuxiang Ying; Tongxiao Jiang; Siwen Li; Deming Nie; Jianzhong Lin

Source:check_circle

Crossref

Study on the sedimentation and interaction of two squirmers in a vertical channel

Physics of Fluids
2022-10 | Journal article
Contributors: Yuxiang Ying; Tongxiao Jiang; Deming Nie; Jianzhong Lin

Source:check_circle

Crossref