Yunliang Li | Water Resources | Best Researcher Award

Prof. Yunliang Li | Water Resources | Best Researcher Award

Professor at Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, China

Yunliang Li is a distinguished researcher specializing in hydrological studies of floodplain lakes, with significant contributions to understanding surface-groundwater interactions, lake flood-pulse processes, and hydrological connectivity in highly heterogeneous floodplain settings. He has independently developed the Lake-Catchment Simulator v1.0, a large-scale numerical model that assesses the hydrodynamic and environmental responses of floodplain lakes to natural and human disturbances. With 71 peer-reviewed publications (including 41 SCI papers) and over 1352 citations, along with two academic monographs, his work has gained substantial recognition. He has received multiple prestigious awards, including the Second Prize for Scientific and Technological Progress from the China National Committee on Large Dams and the Changjiang Technology and Economy Society, as well as honors from the Chinese Academy of Sciences and the Ministry of Water Resources Science and Technology Talent. Holding 23 patents and software copyrights, his research not only advances scientific understanding but also contributes to practical environmental management. His future work aims to deepen insights into the impact of natural and anthropogenic disturbances on floodplain hydrodynamics, further cementing his influence in the field.

Professional Profile 

Education

Yunliang Li holds a strong academic background in hydrology and water resources, with advanced degrees that have laid the foundation for his expertise in floodplain lake dynamics and hydrological connectivity. He obtained his Ph.D. in Hydrology and Water Resources from a leading institution, where he conducted in-depth research on surface-groundwater interactions and floodplain hydrodynamics. Prior to that, he earned his Master’s and Bachelor’s degrees in related fields, equipping him with a solid understanding of eco-hydrology, numerical modeling, and environmental water management. His academic journey has been marked by interdisciplinary learning, innovative research, and technical skill development, enabling him to make substantial contributions to the field of hydrological science.

Professional Experience

Yunliang Li has an extensive professional background in hydrological research, focusing on floodplain lake dynamics, surface-groundwater interactions, and eco-hydrological modeling. He has been actively engaged in scientific research and technological innovation, contributing significantly to the development of hydrological connectivity theories and large-scale numerical simulation tools such as the Lake-Catchment Simulator v1.0. Throughout his career, he has led and participated in numerous high-impact research projects, systematically assessing the effects of extreme hydrological events and human activities on floodplain lakes like Poyang Lake. His expertise has been recognized through multiple prestigious awards and leadership roles in scientific committees, research institutions, and environmental assessment initiatives. In addition to his academic contributions, he has played a key role in patent development and software innovation, further bridging the gap between scientific research and practical water resource management. His ongoing work continues to advance the understanding of hydrodynamic processes, influencing both national and international water management strategies.

Research Interest

Yunliang Li’s research interests lie at the intersection of hydrology, eco-hydrodynamics, and environmental water management, with a particular focus on floodplain lake systems. He is dedicated to understanding surface-groundwater interactions, the hydrological connectivity of heterogeneous floodplains, and the impacts of natural and anthropogenic disturbances on lake hydrodynamics. His work involves developing advanced numerical modeling techniques, such as the Lake-Catchment Simulator v1.0, to assess hydrodynamic and environmental changes under extreme hydrological events and human interventions. Additionally, he is deeply interested in hydrological regulation, ecological restoration, and water resource sustainability, aiming to bridge theoretical research with practical applications for flood risk management, ecosystem conservation, and climate adaptation strategies. Through his research, he seeks to provide scientific insights and technical solutions for better managing floodplain lakes and water environments in response to global environmental changes.

Award nd Honor

Yunliang Li has received numerous prestigious awards and honors in recognition of his outstanding contributions to hydrological research and water resource management. He was awarded the Second Prize for Scientific and Technological Progress by both the China National Committee on Large Dams and the Changjiang Technology and Economy Society, highlighting his pioneering work in floodplain hydrodynamics and hydrological connectivity. He has also been honored as an Excellent Member of the Youth Innovation Promotion Association of the Chinese Academy of Sciences (CAS) and was selected for the Jiangxi Province Thousand Talents Program, demonstrating his influence in advancing eco-hydrological research. Additionally, he has been recognized by the Ministry of Water Resources Science and Technology Talent Program for his contributions to water science and technology innovation. With 23 patents and software copyrights, his research has not only expanded scientific knowledge but also provided practical solutions for water resource management and environmental sustainability. These accolades underscore his leadership and impact in the field of hydrology.

Conclusion

Yunliang Li is a highly deserving candidate for the Best Researcher Award. His groundbreaking contributions to hydrological connectivity, floodplain lake dynamics, and numerical modeling demonstrate excellence. His publication record, patents, and national recognition underscore his impact. Strengthening international collaborations and interdisciplinary applications could further enhance his standing. Given his contributions and achievements, he is a strong contender for this award.

Publications Top Noted

  1. Title: A distributed and process-based model coupling water-sediment-antibiotic interactions to simulate dynamic source-transport-fate of antibiotics at catchment scale

    • Authors: H. Xie, Hui; M. Shang, Meiqi; J. Dong, Jianwei; Y. Li, Yunliang; X.J. Lai, Xijun Jun

    • Year: 2025

    • Citations: 1

  2. Title: How do agricultural polders modulate nutrient dynamics under extreme flooding: Insights for water management in lowland areas

    • Authors: H. Xie, Hui; Y. Li, Yunliang; M. Shang, Meiqi; Y. Wang, Yang; X.J. Lai, Xijun Jun

    • Year: 2025

    • Citations: 0

  3. Title: Disentangling the spatially combined and temporally lagged influences of climate oscillations on seasonal droughts in the East Asian monsoon influenced Poyang Lake Basin

    • Authors: Z. Xing, Zikang; J. Wei, Jianhui; Y. Li, Yunliang; P. Laux, Patrick; H. Kunstmann, Harald

    • Year: 2024

    • Citations: 3

  4. Title: Hydrological Modeling to Unravel the Spatiotemporal Heterogeneity and Attribution of Baseflow in the Yangtze River Source Area, China

    • Authors: H. Ren, Huazhun; G. Wu, Guangdong; L. Shu, Longchang; Y. Li, Yunliang; Y. Wang, Yuxuan

    • Year: 2024

    • Citations: 0

  5. Title: Unravelling groundwater budget in the Poyang floodplain system under intensifying seasonal lake inundation

    • Authors: W. Jiang, Wenyu; B. Liu, Bo; Y. Li, Yunliang; C. Lu, Chengpeng; L. Shu, Longchang

    • Year: 2024

    • Citations: 2

  6. Title: The effects of damming and dam regulation on a river–lake-aquifer system: 3D groundwater flow modeling of Poyang Lake (China)

    • Authors: W. Jiang, Wenyu; B. Liu, Bo; Y. Li, Yunliang; C. Lu, Chengpeng; L. Shu, Longchang

    • Year: 2024

    • Citations: 3

  7. Title: Unveiling ionic structure in the LiF-NdF3 molten salt system as determined by Raman spectroscopy and quantum chemical calculations

    • Authors: M. Lin, Ming; J. Guan, Jinzhao; M. Aziz Diop, Mouhamadou; Y. Li, Yunliang; P. Chen, Peng

    • Year: 2024

    • Citations: 2

  8. Title: Revealing temporal variation of baseflow and its underlying causes in the source region of the Yangtze River (China)

    • Authors: G. Wu, Guangdong; J. Zhang, Jianyun; Y. Li, Yunliang; H. Ren, Huazhun; M. Yang, Mingzhi

    • Year: 2024

    • Citations: 6

  9. Title: Tracing Water Recharge and Transport in the Root-Zone Soil of Different Vegetation Types in the Poyang Lake Floodplain Wetland (China) Using Stable Isotopes

    • Authors: X. Xu, Xiuli; J. Zhao, Jun; G. Wu, Guangdong; Y. Li, Yunliang; L. Hou, Lili

    • Year: 2024

    • Citations: 1

  10. Title: Impact of the Three Gorges Dam on hydrological connectivity and vegetation growth of Poyang Lake floodplain, China

  • Authors: J. Zeng, Jinfeng; J. Qiu, Jingfeng; Z. Wu, Zeyu; X. Liu, Xinggen; Y. Li, Yunliang

  • Year: 2024

  • Citations: 10

 

 

Fangfang Li | Water-Energy Nexus | Women Researcher Award

Prof. Fangfang Li | Water-Energy Nexus | Women Researcher Award

Professor at China Agricultural University, China

Professor Fangfang Li is a distinguished researcher in water resources management and hydro-PV-wind energy systems, currently serving as a professor at China Agricultural University. With a Ph.D. from Tsinghua University and visiting research experience at Cornell and Cambridge, she has led numerous high-impact projects funded by the National Natural Science Foundation of China. Her research focuses on optimizing renewable energy integration, ecological water scheduling, and uncertainty reduction in hydropower operations. She has published 68 SCI papers, holds 6 invention patents and 4 software copyrights, and has received prestigious honors such as the Young Changjiang Scholar Award. Her work extends beyond academia through consultancy projects that contribute to real-world hydrological and energy solutions. With an h-index of 17 and over 1,192 citations, Professor Li’s contributions significantly advance sustainable water and energy management.

Professional Profile 

Education

Professor Fangfang Li holds a bachelor’s and a Ph.D. from Tsinghua University, one of China’s most prestigious institutions. She further expanded her academic experience through visiting research at Cornell University and the University of Cambridge, where she deepened her expertise in water resources management and renewable energy systems. Her strong educational foundation has played a crucial role in shaping her research focus on hydrology, multi-energy systems, and ecological water scheduling, positioning her as a leading expert in the field.

Professional Experience

Professor Fangfang Li is a distinguished researcher and professor at China Agricultural University, specializing in water resources management and hydro-PV-wind energy systems. She has led numerous high-impact research projects, including those funded by the National Natural Science Foundation of China and other prestigious institutions. Her career includes postdoctoral research at China Three Gorges Corporation, where she contributed to optimizing hydropower operations. As a principal investigator, she has spearheaded projects on multi-energy complementary systems, ecological water scheduling, and climate-resilient hydropower management. In addition to her academic contributions, she has worked on industry consultancy projects, developing innovative solutions for flood scheduling, ecological conservation, and sustainable energy integration. With her extensive experience in research, innovation, and real-world applications, Professor Li continues to make significant advancements in the field of hydrology and renewable energy.

Research Interest

Professor Fangfang Li’s research interests lie at the intersection of water resources management, renewable energy integration, and ecological hydrology. She focuses on optimizing multi-energy complementary systems, particularly hydro-PV-wind energy, to enhance sustainability and efficiency in power generation. Her work also addresses uncertainty reduction in hydropower operations, aiming to improve forecasting and decision-making in water and energy systems. Additionally, she is deeply engaged in ecological water scheduling, developing models that balance energy production with environmental conservation. Her research extends to atmospheric water resources, cloud water utilization, and climate change impacts on hydrological processes, contributing to the advancement of sustainable water and energy management.

Award and Honor

Professor Fangfang Li has received numerous prestigious awards and honors in recognition of her outstanding contributions to water resources management and renewable energy research. She was honored with the Young Changjiang Scholar Award, a highly regarded distinction in China that recognizes exceptional academic achievements. Her innovative research in hydro-PV-wind energy systems and ecological water management has earned her leadership roles in multiple national research projects funded by the National Natural Science Foundation of China. In addition to her scholarly achievements, her work has been acknowledged by leading hydrology and energy institutions, further solidifying her reputation as a pioneering researcher in sustainable water and energy systems.

Conclusion

Professor Fangfang Li is an exceptional candidate for the Women Researcher Award. Her contributions to hydrology, renewable energy, and ecological water management are both academically rigorous and practically impactful. Her leadership in high-profile projects and technological innovations further solidify her eligibility. Enhancing global collaborations and advocating for women in STEM would further strengthen her case. Overall, she is highly suitable for this award.

Publications Top Noted

  • Atmospheric Water Resources and Their Exploitability in the Middle East

    • Authors: F. Li, Fangfang; H. Lu, Houliang; H. Wang, Hongru; P. Sun, Peng; J. Qiu, Jun

    • Year: 2025

    • Citations: 0

  • Multi-objective optimization of non-fossil energy structure in China towards the carbon peaking and carbon neutrality goals

    • Authors: M. Li, Mengjia; F. Li, Fangfang; J. Qiu, Jun; N. Zhang, Nan; Z. Song, Zhengyu

    • Year: 2024

    • Citations: 0

  • Long-Term Capturability of Atmospheric Water on a Global Scale (Open Access)

    • Authors: F. Li, Fangfang; H. Lu, Houliang; G. Wang, Guangqian; J. Qiu, Jun

    • Year: 2024

    • Citations: 0

  • Potential impact of precipitation temporal structure on meteorological drought and vegetation condition: A case study on Qinghai-Tibet Plateau (Open Access)

    • Authors: H. Lu, Houliang; J. Qiu, Jun; B.X. Hu, Bill Xiao; F. Li, Fangfang

    • Year: 2024

    • Citations: 1

  • Optimizing reservoir operation incorporating ecological demand and stability requirement

    • Authors: J. Qiu, Jun; C. Ma, Cang; H. Wang, Hongru; H. Li, Houjun; F. Li, Fangfang

    • Year: 2024

    • Citations: 0

  • An improved cross-correlation method for efficient clouds forecasting

    • Authors: H. Zuo, Huimin; J. Qiu, Jun; F. Li, Fangfang

    • Year: 2024

    • Citations: 0

  • A developed Criminisi algorithm based on particle swarm optimization (PSO-CA) for image inpainting

    • Authors: F. Li, Fangfang; H. Zuo, Huimin; Y. Jia, Yinghui; J. Qiu, Jun

    • Year: 2024

    • Citations: 4