Tsz Lok Wan | Postdoctoral Fellow | Best Researcher Award

Dr. Tsz Lok Wan | Water-Energy Nexus | Best Researcher Award

Postdoctoral Fellow at University of Alberta, Canada

Dr. Tsz Lok Wan is a highly accomplished researcher specializing in computational materials science, with a focus on clean energy, environmental sustainability, and advanced catalysis. He holds a Ph.D. from Queensland University of Technology, where he earned multiple prestigious scholarships and the High Achiever Award. His research integrates chemistry, physics, and engineering to design and simulate innovative materials using advanced first-principles calculations and modeling tools. Dr. Wan has authored several high-impact publications in top-tier journals such as Nanoscale, Advanced Materials Technologies, and Journal of Materials Chemistry A, contributing significantly to the understanding of ferroelectric materials and their role in energy and environmental applications. With international research experience across Australia, Hong Kong, and Canada, and active participation in major scientific conferences, he demonstrates strong global engagement and academic leadership. Currently serving as a Young Editorial Board Member at the University of Alberta, Dr. Wan exemplifies the qualities of a forward-thinking and impactful researcher, making him a strong candidate for the Best Researcher Award.

Professional Profile 

Education

Dr. Tsz Lok Wan has a robust academic background in engineering and materials science, beginning with a Bachelor of Engineering (Honours) in Mechanical Engineering from Queensland University of Technology, where he conducted theoretical investigations into the mechanical properties of graphene and carbon nanotube-based nanomaterials. He further advanced his expertise by completing a Master of Engineering Science in Mechanical Engineering at The University of Queensland, focusing his thesis on characterizing the surface force of nanowires. Building on this foundation, he earned a Doctor of Philosophy from Queensland University of Technology, where his research centered on ferroelectric-controllable gas capture and catalysis for environmental and energy applications. His doctoral studies were supported by several prestigious scholarships, including the ARC Discovery Scholarship, QUT HDR Tuition Fee Sponsorship, and the Faculty Write-Up Scholarship, and culminated in receiving the High Achiever Award in 2022 for outstanding academic performance.

Professional Experience

Dr. Tsz Lok Wan has accumulated diverse professional experience across academia and industry, reflecting a strong foundation in research, innovation, and engineering practice. He is currently serving as a Young Editorial Board Member at the University of Alberta’s Department of Civil and Environmental Engineering, contributing to academic leadership and scholarly review. In parallel, he is involved in a carbon neutralization research initiative, further aligning his work with global sustainability goals. Previously, he held a postdoctoral fellowship at the Hong Kong Polytechnic University in the Department of Biomedical Engineering, where he contributed to advanced image analysis and software development for medical applications. His earlier experiences include research internships at the Chinese University of Hong Kong and the Hong Kong Polytechnic University, where he worked on electrocardiograph circuit development and 3D ultrasound image analysis, respectively. Additionally, he gained hands-on engineering experience during an internship at Po Shing Construction Limited, where he calibrated engineering drawings and supported site workflow procedures. These roles have collectively equipped Dr. Wan with a blend of theoretical acumen and practical skills across computational modeling, biomedical engineering, and construction technology.

Research Interest

Dr. Tsz Lok Wan’s research interests lie at the dynamic intersection of chemistry, physics, and engineering, with a primary focus on the development of advanced materials for clean energy, environmental sustainability, and electronic applications. He is particularly interested in the use of computational modeling and first-principles calculations, such as Density Functional Theory (DFT) and Ab Initio Molecular Dynamics (AIMD), to understand and predict the behavior of materials at the atomic scale. His work explores ferroelectric-controlled catalysis, gas adsorption, and the design of two-dimensional (2D) heterostructures for applications such as hydrogen evolution and nitrogen reduction reactions. By simulating chemical reactions and material interactions that are difficult to observe experimentally, Dr. Wan aims to accelerate the discovery of efficient, sustainable catalysts and contribute to the global transition toward low-carbon technologies.

Award and Honor

Dr. Tsz Lok Wan has received several prestigious awards and honors in recognition of his academic excellence and research contributions. During his doctoral studies at Queensland University of Technology, he was the recipient of the ARC Discovery Scholarship, the QUT HDR Tuition Fee Sponsorship, and the Faculty Write-Up Scholarship, reflecting his strong academic standing and research potential. In 2022, he was honored with the High Achiever Award, acknowledging his outstanding performance and impact in the field of computational materials science. These accolades underscore his dedication to advancing knowledge in clean energy and environmental applications through innovative theoretical research.

Conclusion

Tsz Lok Wan demonstrates exemplary academic performance, technical proficiency, and research productivity in high-impact areas like sustainable catalysis and clean energy materials. While there is room to strengthen leadership and translational aspects of his research, his consistent contributions, especially in computational materials science, make him a highly suitable candidate for the Best Researcher Award, particularly in the early-to-mid career category.

Publications Top Noted

  • Title: Catalysis based on ferroelectrics: controllable chemical reaction with boosted efficiency
    Authors: TL Wan, L Ge, Y Pan, Q Yuan, L Liu, S Sarina, L Kou
    Year: 2021
    Citation: 50

  • Title: Rational design of 2D ferroelectric heterogeneous catalysts for controllable hydrogen evolution reaction
    Authors: TL Wan, J Liu, X Tan, T Liao, Y Gu, A Du, S Smith, L Kou
    Year: 2022
    Citation: 15

  • Title: Ferroelectric Controlled Gas Adsorption in Doped Graphene/In2Se3 Heterostructure
    Authors: TL Wan, J Shang, Y Gu, L Kou
    Year: 2022
    Citation: 12

  • Title: Density Functional Theory Studies on Magnetic Manipulation in NiI2 Layers
    Authors: M Liu, L Zhang, J Liu, TL Wan, A Du, Y Gu, L Kou
    Year: 2023
    Citation: 11

  • Title: Synergistic engineering of heterovalent states and sulfur-vacancy defects in Co/O co-doped ZnS for enhanced photocatalytic hydrogen evolution
    Authors: L Chen, B Wu, X Wu, DH Kuo, TL Wan, B Yang, P Zhang, Z Su, J Lin, D Lu, X Chen
    Year: 2025
    Citation: 7

  • Title: Bimetallic conjugated metal–organic frameworks as bifunctional electrocatalysts for overall water splitting
    Authors: TL Wan, J Liu, X Tan, M Liu, S Smith, L Kou
    Year: 2023
    Citation: 4

  • Title: Enhanced Activity and Selectivity for Nitrogen Reduction Reaction in Electrides‐Based Heterostructures: A DFT Computational Study
    Authors: H Wijesingha, TL Wan, J Liu, L Kou
    Year: 2024
    Citation: 3

  • Title: Magnetic skyrmions and their manipulations in a 2D multiferroic CuCrP₂Te₆ monolayer
    Authors: M Liu, TL Wan, K Dou, L Zhang, W Sun, J Jiang, Y Ma, Y Gu, L Kou
    Year: 2024
    Citation: 3

  • Title: Mo-cation/O-anion doping strategy for creating vacancy defects and cation multivalency to enhance the hydrogen evolution of ZnS under visible light
    Authors: X Wu, TL Wan, B Yang, DH Kuo, P Zhang, M Liu, SN Adawara, D Fang Lu, J Lin, X Chen
    Year: 2025
    Citation: Not available yet

  • Title: Ferroelectric controllable gas capture and catalysis for environmental and energy application (PhD Thesis)
    Author: TL Wan
    Year: 2024
    Citation: Not applicable

  • Title: Ferroelectric Controlled Gas Adsorption in Doped Graphene/In2Se3 Heterostructure (Duplicate journal entry in Adv. Mater. Technol.)
    Authors: TL Wan, J Shang, Y Gu, L Kou
    Year: 2022
    Citation: Not listed separately (already counted above)

  • Title: Characterizing of Surface Forces of Nanowires (Master’s Thesis)
    Author: TL Wan
    Year: 2020
    Citation: Not applicable

.

 

Mohamed Saber | Hydropower Systems | Best Researcher Award

Mr. Mohamed Saber | Hydropower Systems | Best Researcher Award

Lecturer assistant at Zagazig University, Egypt

Mohamed Saber Abdel-Moaty is a Lecturer Assistant in the Department of Water and Water Structures Engineering at Zagazig University, Egypt, and a Civil Hydraulic Engineer at the university’s Irrigation and Hydraulics Lab. He holds a B.Sc. in Civil Engineering with honors and is currently completing his M.Sc. in Water and Water Structures Engineering, focusing on energy harvesting using water wheels at low-head structures. His research interests center around sustainable hydraulic systems and renewable energy applications. He has published in the high-impact journal Renewable Energy, with work highlighting innovative designs for pico hydropower generation. Mohamed is proficient in CFD simulations using ANSYS Fluent and FLOW-3D, and skilled in structural design software like SAP2000 and ETABS. His professional experience includes academic teaching, computational and experimental research, structural design freelancing, and co-founding a general contracting company. He also gained international engineering experience through an intensive internship with AECOM in Qatar. Mohamed combines strong technical capabilities, academic dedication, and entrepreneurial spirit, making him a promising early-career researcher in the field of civil and hydraulic engineering.

Professional Profile 

Education

Mohamed Saber holds a strong academ ic background in civil and hydraulic engineering. He earned his Bachelor of Science in Civil Engineering from Zagazig University in 2019, graduating with an Excellent with Honors and an impressive overall grade of 88.65%. Building on his undergraduate success, he is currently pursuing a Master of Science in Water and Water Structures Engineering at the same university, with a research focus on sustainable energy, specifically the investigation of energy harvesting using water wheels at low-head structures. His academic journey reflects a consistent commitment to innovation, technical excellence, and the advancement of renewable energy solutions within hydraulic systems.

Professional Experience

Mohamed Saber has accumulated diverse professional experience in both academic and practical engineering settings since 2019. As a Lecturer Assistant in the Department of Water and Water Structures Engineering at Zagazig University, he has supported undergraduate courses, supervised lab work, and guided students in graduation projects. Concurrently, he has served as a Civil Hydraulic Engineer at the university’s Irrigation and Hydraulics Lab, where he conducted experimental and computational research focused on open channel flow and hydraulic structures. Beyond academia, Mohamed has worked as a freelance structural design engineer, delivering structural analysis and construction drawings for residential and commercial buildings using software such as SAP2000, ETABS, and SAFE. He also gained hands-on experience as a General Contracting Engineer, managing site activities, coordinating with subcontractors, and ensuring quality control. His technical expertise extends to freelance CFD engineering, where he performed simulations using ANSYS Fluent for fluid flow and heat transfer analysis. Additionally, Mohamed is the co-founder of CIVIC, a construction company offering design-build services, demonstrating his entrepreneurial initiative and leadership within the engineering industry.

Research Interest

Mohamed Saber’s research interests lie at the intersection of hydraulic engineering, renewable energy, and computational fluid dynamics. He is particularly focused on the development of sustainable energy solutions through the integration of hydraulic structures and energy harvesting technologies, as demonstrated by his M.Sc. thesis on energy generation using water wheels at low-head structures. His work aims to enhance the efficiency and applicability of pico and micro hydropower systems, especially in rural or developing regions. Mohamed is also deeply engaged in numerical modeling and simulation, utilizing CFD tools like ANSYS Fluent and FLOW-3D to analyze fluid behavior, optimize hydraulic performance, and support experimental findings. His broader research vision involves improving water infrastructure through innovative, environmentally friendly engineering approaches that align with global sustainability goals.

Award and Honor

Mohamed Saber has been recognized for his academic excellence and professional commitment throughout his early career. He graduated with a B.Sc. in Civil Engineering from Zagazig University with an Excellent with Honors distinction, achieving a high academic standing with an overall grade . His innovative research on renewable energy applications in hydraulic systems has led to the publication of a peer-reviewed article in the prestigious journal Renewable Energy, reflecting both the quality and relevance of his work. While he is still in the early stages of his research career, his strong academic performance, publication record, and involvement in significant engineering projects position him as a promising candidate for future academic and professional awards.

Conclusion

Recommendation: Mohammed Saber is a strong emerging researcher and could be a good candidate for an Early Career or Young Researcher Award, rather than a “Best Researcher Award” in a general or senior category. If the award focuses on innovation, potential, and sustainability-focused research in early-stage academics, then he is a highly suitable nominee..

Publications Top Noted

Title:
Techno-economic Assessment of the Dethridge Waterwheel under Sluice Gates in a Novel Design for Pico Hydropower Generation

Authors:
Mohamed Saber, Gamal Abdelall, Riham Ezzeldin, Ahmed Farouk AbdelGawad, Reda Ragab

Year:
2024

Journal:
Renewable Energy, Volume 234, Article 121206

DOI:
10.1016/j.renene.2024.121206

ISSN:
0960-1481

Citation (APA Style):
Saber, M., Abdelall, G., Ezzeldin, R., AbdelGawad, A. F., & Ragab, R. (2024). Techno-economic assessment of the Dethridge waterwheel under sluice gates in a novel design for pico hydropower generation. Renewable Energy, 234, 121206. https://doi.org/10.1016/j.renene.2024.121206

Zeling Zhao | Sustainable Water Use | Best Researcher Award

Dr. Zeling Zhao | Sustainable Water Use | Best Researcher Award

College of Mechanical & Energy Engineering, Beijing University of Technology, china

Zeling Zhao is a dedicated researcher in the field of mechanical engineering, specializing in material plastic forming and precision hydraulic transmission. Affiliated with the College of Mechanical & Energy Engineering at Beijing University of Technology, Zhao has contributed to the conservation and efficient utilization of non-ferrous metal resources through innovative research on titanium chip recycling. Their work includes the development of a double-toothed roller crusher, which has resulted in a published patent and two peer-reviewed SCI journal articles. While Zhao’s research demonstrates clear technical depth and industrial relevance, expanding academic output, collaborations, and professional engagement would further strengthen their research profile and broader impact in the field.

Professional Profile 

Education

Zeling Zhao has an academic background in mechanical engineering, with a focus on material plastic forming and precision hydraulic transmission. Their education has provided a strong foundation in the principles of mechanical systems and advanced manufacturing processes, equipping them with the technical skills necessary for conducting specialized research in material forming technologies. This educational grounding has enabled Zhao to pursue innovative work in the development of equipment for recycling titanium scraps, aligning with both industrial application and sustainable engineering practices.

Professional Experience

Zeling Zhao has professional experience rooted in academic research within the field of mechanical engineering, particularly focusing on material plastic forming and precision hydraulic transmission. Their work at the College of Mechanical & Energy Engineering, Beijing University of Technology, has centered on the development of innovative solutions for the efficient recycling of titanium waste. Notably, Zhao has led research on the design and optimization of a double-toothed roller crusher, contributing to both theoretical advancements and practical engineering applications. Although their profile does not currently include consultancy or industry project experience, Zhao’s contributions reflect a strong commitment to applied research and technological innovation.

Research Interest

Zeling Zhao’s research interests lie in the areas of material plastic forming and precision hydraulic transmission, with a particular focus on the recycling and utilization of non-ferrous metal resources. Their work aims to develop efficient mechanical solutions for processing industrial waste, such as titanium chips, through advanced forming techniques and equipment design. Zhao is especially interested in the optimization of crushing processes and the simulation of material behavior under mechanical stress, as demonstrated in their study and development of a double-toothed roller crusher. These interests reflect a strong commitment to sustainable engineering practices and the advancement of manufacturing technologies.

Award and Honor

As of now, Zeling Zhao has not listed any formal awards or honors in their academic or professional profile. However, their contributions to the field of mechanical engineering—particularly through the publication of SCI-indexed journal articles and the development of a patented double-toothed roller crusher for titanium chip recycling—reflect a growing recognition of their research potential. Zhao’s work demonstrates innovation and relevance, positioning them as a promising candidate for future awards and honors in engineering research and sustainable technology development.

Conclusion

Zeling Zhao shows promising potential as a researcher with a clear technical focus and innovative contributions, particularly in materials engineering and sustainability-focused applications. However, for the Best Researcher Award, which typically recognizes outstanding and wide-reaching academic and research contributions, Zhao’s current profile may be considered emerging rather than established.

Publications Top Noted

  1. Finite Element Simulation and Optimization of Process Parameters for Titanium Chip Crusher

    • Authors: Jianghua Huang; Zeling Zhao; Xiaomin Huang; Tao Liu; Ji Hongchao

    • Year: 2025

    • Journal: Materials

    • DOI: 10.3390/ma18091894

    • Citation: Multidisciplinary Digital Publishing Institute

  1. Mechanical Properties and Fracture Behavior of a TC4 Titanium Alloy Sheet

    • Authors: Zeling Zhao; Ji Hongchao; Yingzhuo Zhong; Chun Han; Xuefeng Tang

    • Year: 2022

    • Journal: Materials

    • DOI: 10.3390/ma15238589

    • Citation: Part of ISSN: 1996-1944

  1. Johnson-Cook Model for TC4 Titanium Alloy Based on Compression Experiment

    • Author: Zeling Zhao

    • Year: Not specified (likely 2023 based on sequence)

    • Journal: Metalurgija

    • Citation: Zeling Zhao (Preferred Source)

 

Neyara Radwan | Engineering | Women Researcher Award

Assoc. Prof. Dr. Neyara Radwan | Engineering | Women Researcher Award

Liwa College - Abu Dhabi Campus, United Arab Emirates

👨‍🎓Profiles

👩‍🏫 Early Academic Pursuits

Neyara Radwan embarked on her academic journey in Egypt, where she completed her Bachelor's degree in Production Engineering & Mechanical Design from Mansoura University. Her early academic pursuits were characterized by a strong foundation in engineering principles, leading to her Bachelor's project on designing belt conveyors for Belkas Sugar Factory. She further honed her expertise with a Master's degree in Production Engineering & Mechanical Design, from the same institution. The focus of her Master's thesis was on the "Utilization of Computer-Aided Expert System for Power Transmission Shaft Design," a work that would lay the groundwork for her future research. In 2008, she earned her Ph.D. in Production Engineering from Benha University, Egypt, with a thesis titled “CAD of Electro-Chemical Honing Machining and Statistical Modeling for Selection of Parameters Influencing Electro-Chemical Honing Process." This work demonstrated her expertise in advanced manufacturing techniques and solidified her role as a leading academic in the field.

🏢 Professional Endeavors

Throughout her career, She has held various academic and leadership positions across multiple institutions globally. She has been a Full-time Associate Professor at Liwa College, Abu Dhabi, UAE, as well as a Full-time Associate Professor in the Mechanical Department at Suez Canal University, Additionally, she has served at prestigious institutions such as Al Mareefa University, KSA, and King Abdul-Aziz University, KSA, where she was involved in quality assurance and Ph.D. program development. Her versatility is reflected in her work at both full-time and part-time capacities at institutions like the High Institute for Industrial Building and Production Technology and the Specialized Studies Academy in Egypt, marking her as a well-rounded academic professional with vast international experience.

🧑‍🔬 Contributions and Research Focus

Her research interests span across a wide range of fields, including Optimization, Lean Manufacturing, Sustainability, Supply Chain Management, and Solid Waste Management. Her focus on the application of Artificial Intelligence (AI) in manufacturing processes and energy systems has made significant contributions to both the theoretical and practical aspects of these disciplines. She has contributed to sustainable engineering systems by optimizing operation and enhancing renewable energy technologies. Her work emphasizes optimal scheduling operations, integration of AI for operational efficiency, and advancing quality management practices in industrial environments.

🌍 Impact and Influence

Her academic and professional influence extends globally through her work in teaching, research, and industry applications. Her contributions have been recognized in various prestigious awards, including the Certificate of Excellence as Best Global Educator and the Global Award from the International Research Academy of Science and Arts (IRASA). She has impacted both the academic community and industry by promoting sustainability, energy efficiency, and circular economy approaches, notably in Saudi Arabia's Vision 2030 waste management goals. Through her numerous awards, including the Golden Academic Award from Tradepreneur Global (2022), she has established herself as a leading voice in engineering education and research. Her extensive list of citations and publications further amplifies her reach and impact in the global academic community.

📚 Academic Cites and Research Recognition

Her research has garnered substantial recognition, with her contributions being cited extensively across various journals and international conferences. Her work on optimization and sustainable engineering has been pivotal in developing better operational strategies in industrial systems, contributing to both academic literature and real-world applications. She has received multiple research excellence awards from universities like Suez Canal University, highlighting her dedication to advancing knowledge in production engineering and sustainable systems.

🧰 Technical Skills

She is proficient in a diverse set of technical skills related to industrial and production engineering, including Optimization Algorithms, Lean Manufacturing Techniques, and AI Applications in Engineering Systems. She has applied these skills to enhance operational efficiency, improve quality management, and design sustainable energy systems. Her expertise also spans across renewable energy technologies, systems operation, and optimal scheduling, making her a significant contributor to both energy and manufacturing industries.

👨‍🏫 Teaching Experience

She has an extensive teaching career, spanning over two decades, during which she has mentored undergraduate and graduate students across various academic institutions in Egypt, the UAE, Saudi Arabia, and beyond. Her role as an educator has not only involved teaching core engineering concepts but also guiding students in conducting high-impact research in optimization, sustainable manufacturing, and energy systems. Her teaching approach integrates practical applications with theoretical knowledge, preparing her students to tackle real-world challenges in industrial management and engineering.

🌟 Legacy and Future Contributions

Her legacy in academia and research is defined by her commitment to promoting sustainability and innovation in engineering. She has significantly contributed to research in the fields of renewable energy, lean manufacturing, and artificial intelligence, making strides toward more efficient and environmentally friendly industrial practices. Moving forward, She is dedicated to advancing the field of sustainable engineering through interdisciplinary research that bridges technology, management, and energy systems. She aims to continue her legacy by mentoring the next generation of engineers and contributing to global sustainability goals, particularly in the context of waste management and circular economy approaches.

🏅 Awards and Recognition

Her exceptional contributions to education and research have been recognized through numerous awards. Some of her notable accolades include: Excellence Award from the Faculty of Economics and Administration at King Abdulaziz University, Global Award for Most Outstanding Engineering Educator, Golden Academic Award from Tradepreneur Global, Global Academic Excellence Award from ICWP, Global Service to Humanity Award from ADlafrica,

📖Notable Publications

  1. Computational Analysis of MHD Nanofluid Flow Across a Heated Square Cylinder with Heat Transfer and Entropy Generation
    • Authors: Madhu Sharma, Bhupendra K. Sharma, Chandan Kumawat, Arun K. Jalan, Neyara Radwan
    • Journal: Acta Mechanica et Automatica
    • Year: 2024
  2. The Varying Viscosity Impact in an Inclined Peristaltic Channel with Diffusion‐Thermo and Thermo‐Diffusion
    • Authors: Anum Tanveer, Sharak Jarral, A. Al‐Zubaidi, Salman Saleem, Neyara Radwan
    • Journal: ZAMM - Journal of Applied Mathematics and Mechanics
    • Year: 2024
  3. Applications of Lubrication Approximation Theory in the Analysis of the Roll‐Coating Using a Tangent Hyperbolic Fluid Model
    • Authors: Hafiz Muhammad Atif, Iffat Zaka, Neyara Radwan, Muhammad Asif Javed, Mubbashar Nazeer, Salman Saleem
    • Journal: ZAMM - Journal of Applied Mathematics and Mechanics
    • Year: 2024
  4. Chromium Contamination and Effect on Environmental Health and Its Remediation: A Sustainable Approaches
    • Authors: Shiv Prasad, Krishna Kumar Yadav, Sandeep Kumar, Neha Gupta, Marina M.S. Cabral-Pinto, Shahabaldin Rezania, Neyara Radwan, Javed Alam
    • Journal: Journal of Environmental Management
    • Year: 2021
  5. Strength and Flexural Behavior of Steel Fiber and Silica Fume Incorporated Self-Compacting Concrete
    • Authors: Abdalla M. Saba, Afzal Husain Khan, Mohammad Nadeem Akhtar, Nadeem A. Khan, Seyed Saeid Rahimian Koloor, Michal Petrů, Neyara Radwan
    • Journal: Journal of Materials Research and Technology
    • Year: 2021
  6. Measuring Industrial Symbiosis Index Using Multi-Grade Fuzzy Approach
    • Authors: Kalyan C., Abhirama T., Mohammed N.R., Aravind Raj S., Jayakrishna K.
    • Journal: Lecture Notes in Mechanical Engineering
    • Year: 2019